
CS224n: Natural Language Processing with Deep
Learning 1

1 Course Instructors: Christopher
Manning, Richard SocherLecture Notes: Part IV

Dependency Parsing 2
2 Authors: Lisa Wang, Juhi Naik, and
Shayne Longpre

Winter 2019

Keyphrases: Dependency Parsing.

1 Dependency Grammar and Dependency Structure

Parse trees in NLP, analogous to those in compilers, are used to ana-
lyze the syntactic structure of sentences. There are two main types of
structures used - constituency structures and dependency structures.

Constituency Grammar uses phrase structure grammar to organize
words into nested constituents. This will be covered in more detail in
following chapters. We now focus on Dependency Parsing.

Dependency structure of sentences shows which words depend
on (modify or are arguments of) which other words. These binary
asymmetric relations between the words are called dependencies and
are depicted as arrows going from the head (or governor, superior,
regent) to the dependent (or modifier, inferior, subordinate). Usually
these dependencies form a tree structure. They are often typed with
the name of grammatical relations (subject, prepositional object,
apposition, etc.). An example of such a dependency tree is shown in
Figure 1. Sometimes a fake ROOT node is added as the head to the
whole tree so that every word is a dependent of exactly one node.

Figure 1: Dependency tree for the sen-
tence "Bills on ports and immigration
were submitted by Senator Brownback,
Republican of Kansas"

1.1 Dependency Parsing

Dependency parsing is the task of analyzing the syntactic depen-
dency structure of a given input sentence S. The output of a depen-
dency parser is a dependency tree where the words of the input sen-
tence are connected by typed dependency relations. Formally, the de-
pendency parsing problem asks to create a mapping from the input
sentence with words S = w0w1...wn (where w0 is the ROOT) to its
dependency tree graph G. Many different variations of dependency-
based methods have been developed in recent years, including neural
network-based methods, which we will describe later.

To be precise, there are two subproblems in dependency parsing
(adapted from Kuebler et al., chapter 1.2):

1. Learning: Given a training set D of sentences annotated with de-
pendency graphs, induce a parsing model M that can be used to
parse new sentences.



cs224n: natural language processing with deep learning lecture notes: part iv

dependency parsing 2

2. Parsing: Given a parsing model M and a sentence S, derive the
optimal dependency graph D for S according to M.

1.2 Transition-Based Dependency Parsing

Transition-based dependency parsing relies on a state machine which
defines the possible transitions to create the mapping from the input
sentence to the dependency tree. The learning problem is to induce
a model which can predict the next transition in the state machine
based on the transition history. The parsing problem is to construct
the optimal sequence of transitions for the input sentence, given the
previously induced model. Most transition-based systems do not
make use of a formal grammar.

1.3 Greedy Deterministic Transition-Based Parsing

This system was introduced by Nivre in 2003 and was radically dif-
ferent from other methods in use at that time.

This transition system is a state machine, which consists of states
and transitions between those states. The model induces a sequence of
transitions from some initial state to one of several terminal states.

States:
For any sentence S = w0w1...wn, a state can be described with a

triple c = (σ, β, A):

1. a stack σ of words wi from S,

2. a buffer β of words wi from S,

3. a set of dependency arcs A of the form (wi, r, wj), where wi, wj are
from S, and r describes a dependency relation.

It follows that for any sentence S = w0w1...wn,

1. an initial state c0 is of the form ([w0]σ, [w1, ..., wn]β, ∅) (only the
ROOT is on the stack σ, all other words are in the buffer β and no
actions have been chosen yet),

2. a terminal state has the form (σ, []β, A).

Transitions:
Figure 2: Transitions for Dependency
Parsing.

There are three types of transitions between states:

1. Shift: Remove the first word in the buffer and push it on top of
the stack. (Pre-condition: buffer has to be non-empty.)

2. Left-Arcr: Add a dependency arc (wj, r, wi) to the arc set A,
where wi is the word second to the top of the stack and wj is the



cs224n: natural language processing with deep learning lecture notes: part iv

dependency parsing 3

word at the top of the stack. Remove wi from the stack. (Pre-
condition: the stack needs to contain at least two items and wi

cannot be the ROOT.)

3. Right-Arcr: Add a dependency arc (wi, r, wj) to the arc set A,
where wi is the word second to the top of the stack and wj is
the word at the top of the stack. Remove wj from the stack. (Pre-
condition: The stack needs to contain at least two items.)

A more formal definition of these three transitions is presented in
Figure 2.

1.4 Neural Dependency Parsing

While there are many deep models for dependency parsing, this
section focuses specifically on greedy, transition-based neural de-
pendency parsers. This class of model has demonstrated compara-
ble performance and significantly better efficiency than traditional
feature-based discriminative dependency parsers. The primary dis-
tinction from previous models is the reliance on dense rather than
sparse feature representations.

The model we will describe employs the arc-standard system
for transitions, as presented in section 1.3. Ultimately, the aim of
the model is to predict a transition sequence from some initial con-
figuration c to a terminal configuration, in which the dependency
parse tree is encoded. As the model is greedy, it attempts to correctly
predict one transition T ∈ {shift, Left-Arcr, Right-Arcr} at
a time, based on features extracted from the current configuration
c = (σ, β, A). Recall, σ is the stack, β the buffer, and A the set of
dependency arcs for a given sentence.

Feature Selection:

Depending on the desired complexity of the model, there is flexi-
bility in defining the input to the neural network. The features for a
given sentence S generally include some subset of:

1. Sword: Vector representations for some of the words in S (and their
dependents) at the top of the stack σ and buffer β.

2. Stag: Part-of-Speech (POS) tags for some of the words in S. POS
tags comprise a small, discrete set: P = {NN, NNP, NNS, DT, J J, ...}

3. Slabel : The arc-labels for some of the words in S. The arc-labels
comprise a small, discrete set, describing the dependency relation:
L = {amod, tmod, nsubj, csubj, dobj, ...}



cs224n: natural language processing with deep learning lecture notes: part iv

dependency parsing 4

For each feature type, we will have a corresponding embedding ma-
trix, mapping from the feature’s one hot encoding, to a d-dimensional
dense vector representation. The full embedding matrix for Sword is
Ew ∈ Rd×Nw where Nw is the dictionary/vocabulary size. Corre-
spondingly, the POS and label embedding matrices are Et ∈ Rd×Nt

and El ∈ Rd×Nl where Nt and Nl are the number of distinct POS tags
and arc labels.

Lastly, let the number of chosen elements from each set of features
be denoted as nword, ntag, and nlabel respectively.

Feature Selection Example:

As an example, consider the following choices for Sword, Stag, and
Slabel .

1. Sword: The top 3 words on the stack and buffer: s1, s2, s3, b1, b2, b3.
The first and second leftmost / rightmost children of the top two
words on the stack: lc1(si), rc1(si), lc2(si), rc2(si), i = 1, 2. The
leftmost of leftmost / rightmost of rightmost children of the top
two words on the stack: lc1(lc1(si)), rc1(rc1(si)), i = 1, 2. In total
Sword contains nw = 18 elements.

2. Stag: The corresponding POS tags for Stag (nt = 18).

3. Slabel : The corresponding arc labels of words, excluding those 6

words on the stack/buffer (nl = 12).

Note that we use a special Null token for non-existent elements:
when the stack and buffer are empty or dependents have not been
assigned yet. For a given sentence example, we select the words,
POS tags and arc labels given the schematic defined above, extract
their corresponding dense feature representations produced from the
embedding matrices Ew, Et, and El , and concatenate these vectors
into our inputs [xw, xt, xl ]. At training time we backpropagate into
the dense vector representations, as well as the parameters at later
layers.

Feedforward Neural Network Model:

The network contains an input layer [xw, xt, xl ], a hidden layer,
and a final softmax layer with a cross-entropy loss function. We can
either define a single weight matrix in the hidden layer, to operate
on a concatenation of [xw, xt, xl ], or we can use three weight matrices
[Ww

1 , Wt
1, W l

1], one for each input type, as shown in Figure 3. We then
apply a non-linear function and use one more affine layer [W2] so
that there are an equivalent number of softmax probabilities to the
number of possible transitions (the output dimension).



cs224n: natural language processing with deep learning lecture notes: part iv

dependency parsing 5

· · · · · ·

· · ·

· · ·

Input layer: [xw, xt, xl ]

Hidden layer:
h = (Ww

1 xw + Wt
1xt + W l

1xl + b1)
3

Softmax layer:
p = softmax(W2h)

words POS tags arc labels

ROOT has_VBZ

He_PRP
nsubj

has_VBZ good_JJ control_NN ._.

Stack Buffer

Configuration

Figure 3: The neural network archi-
tecture for greedy, transition-based
dependency parsing.Note that in Figure 3, f (x) = x3 is the non-linear function used.

For a more complete explanation of a greedy transition-based
neural dependency parser, refer to "A Fast and Accurate Dependency
Parser using Neural Networks" under Further Reading.

Further reading:
Danqi Chen, and Christopher D. Manning. "A Fast and Accurate

Dependency Parser using Neural Networks." EMNLP. 2014.
Kuebler, Sandra, Ryan McDonald, and Joakim Nivre. “Depen-

dency parsing.” Synthesis Lectures on Human Language Technolo-
gies 1.1 (2009): 1-127.


	Dependency Grammar and Dependency Structure

