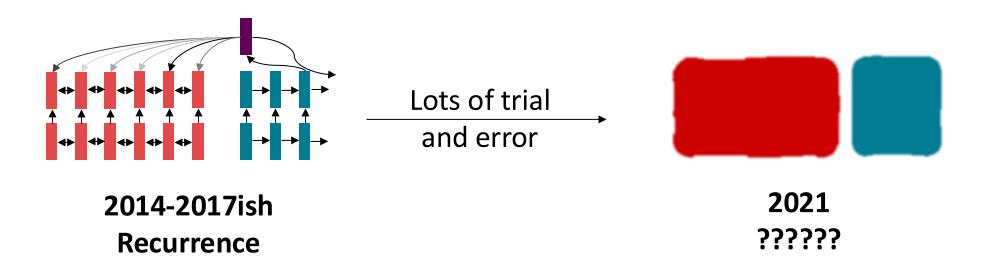
Natural Language Processing with Deep Learning CS224N/Ling284

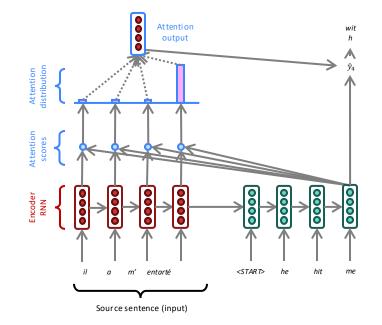
Tatsunori Hashimoto Lecture 8: Self-Attention and Transformers

Lecture Plan

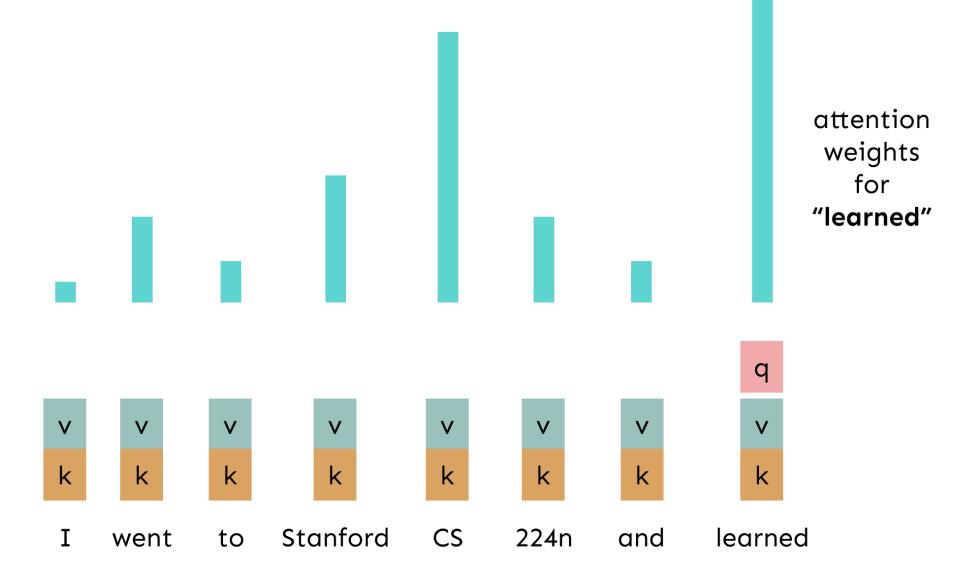

- 1. From recurrence (RNN) to attention-based NLP models
- 2. The Transformer model
- 3. Great results with Transformers
- 4. Drawbacks and variants of Transformers

Reminders:

- See the 2023 lecture notes for some bonus material
- Assignment 4 due Feb 13! Use Colab for the final training if you don't have a GPU.
- Final project proposal out tonight, due Tuesday, Feb 11!
- Please try to hand in the project proposal on time; we want to get you feedback quickly!


Do we even need recurrence at all?

- Abstractly: Attention is a way to pass information from a sequence (x) to a neural network input. (h_t)
 - This is also *exactly* what RNNs are used for to pass information!
 - Can we just get rid of the RNN entirely? Maybe attention is just a better way to pass information!


The building block we need: *self* attention

• What we talked about – **Cross** attention: paying attention to the input x to generate y_t

• What we need – **Self** attention: to generate y_t , we need to pay attention to $y_{< t}$

Self-Attention Hypothetical Example

Self-Attention: keys, queries, values from the same sequence

Let $w_{1:n}$ be a sequence of words in vocabulary V, like Zuko made his uncle tea.

For each w_i , let $x_i = Ew_i$, where $E \in \mathbb{R}^{d \times |V|}$ is an embedding matrix.

1. Transform each word embedding with weight matrices Q, K, V , each in $\mathbb{R}^{d \times d}$

 $\boldsymbol{q}_i = Q \boldsymbol{x}_i$ (queries) $\boldsymbol{k}_i = K \boldsymbol{x}_i$ (keys) $\boldsymbol{v}_i = V \boldsymbol{x}_i$ (values)

2. Compute pairwise similarities between keys and queries; normalize with softmax

$$\boldsymbol{e}_{ij} = \boldsymbol{q}_i^{\mathsf{T}} \boldsymbol{k}_j \qquad \boldsymbol{\alpha}_{ij} = \frac{\exp(\boldsymbol{e}_{ij})}{\sum_{j'} \exp(\boldsymbol{e}_{ij'})}$$

3. Compute output for each word as weighted sum of values

$$\boldsymbol{o}_i = \sum_j \boldsymbol{\alpha}_{ij} \, \boldsymbol{\nu}_i$$

Barriers and solutions for Self-Attention as a building block

Barriers

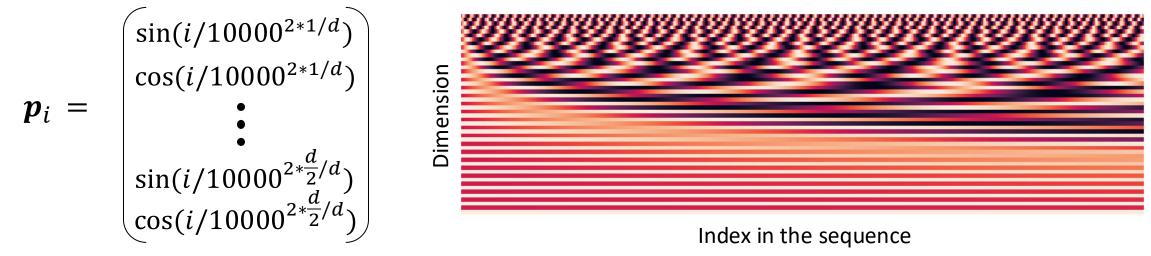
Solutions

• Doesn't have an inherent notion of order!

Fixing the first self-attention problem: sequence order

- Since self-attention doesn't build in order information, we need to encode the order of the sentence in our keys, queries, and values.
- Consider representing each sequence index as a vector

 $p_i \in \mathbb{R}^d$, for $i \in \{1, 2, ..., n\}$ are position vectors


- Don't worry about what the p_i are made of yet!
- Easy to incorporate this info into our self-attention block: just add the p_i to our inputs!
- Recall that x_i is the embedding of the word at index *i*. The positioned embedding is:

$$\widetilde{x}_i = x_i + p_i$$

In deep self-attention networks, we do this at the first layer! You could concatenate them as well, but people mostly just add...

Position representation vectors through sinusoids

• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

- Pros:
 - Periodicity indicates that maybe "absolute position" isn't as important
 - Maybe can extrapolate to longer sequences as periods restart!
- Cons:
 - Not learnable; also the extrapolation doesn't really work!

Position representation vectors learned from scratch

- Learned absolute position representations: Let all p_i be learnable parameters! Learn a matrix $p \in \mathbb{R}^{d \times n}$, and let each p_i be a column of that matrix!
- Pros:
 - Flexibility: each position gets to be learned to fit the data
- Cons:
 - Definitely can't extrapolate to indices outside 1, ..., n.
- Most systems use this!
- Sometimes people try more flexible representations of position:
 - Relative linear position attention [Shaw et al., 2018]
 - Dependency syntax-based position [Wang et al., 2019]

Common, modern position embeddings - RoPE

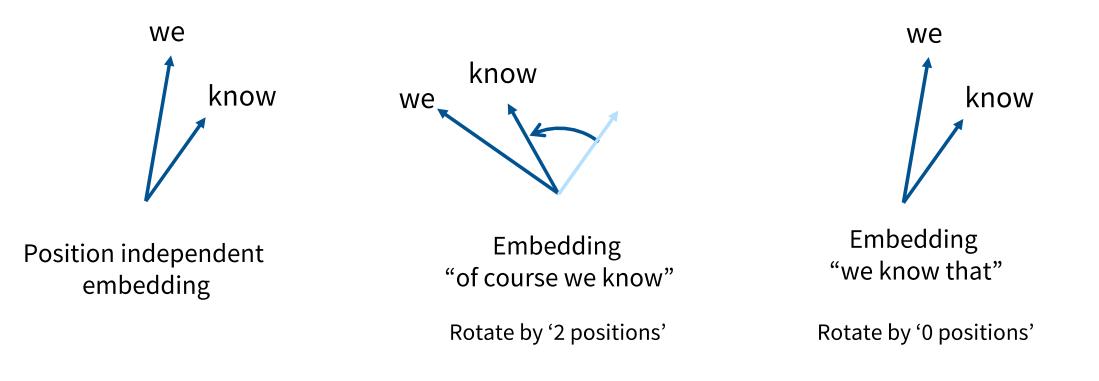
High level thought process: a *relative* position embedding should be some f(x, i) s.t.

$$\langle f(x,i), f(y,j) \rangle = g(x,y,i-j)$$

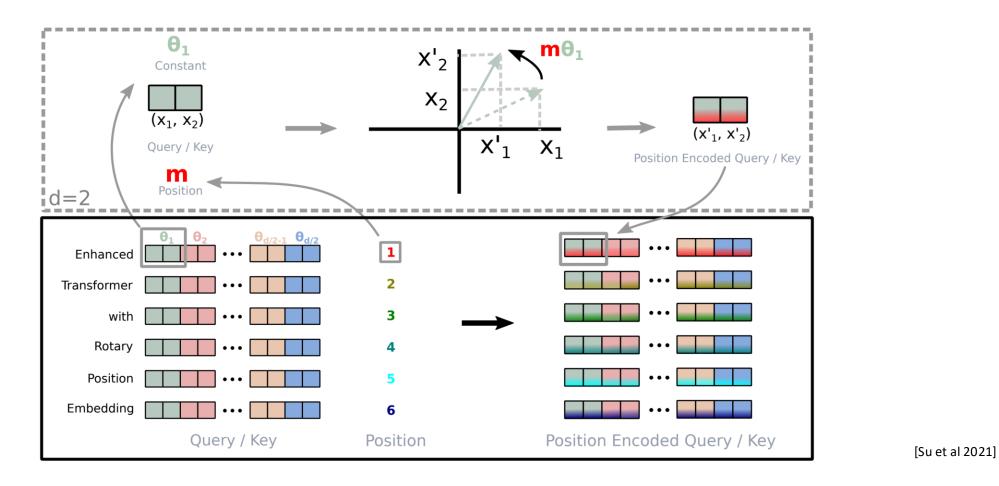
That is, the attention function *only* gets to depend on the relative position (i-j). How do existing embeddings not fulfill this goal?

•Sine: Has various cross-terms that are not relative

• Absolute:


$$e_{ij} = \frac{x_i W^Q (x_j W^K + a_{ij}^K)^T}{\sqrt{d_z}}$$

is not an inner product


RoPE – Embedding via rotation

How can we solve this problem?

- We want our embeddings to be invariant to absolute position
- We know that inner products are invariant to arbitrary rotation.

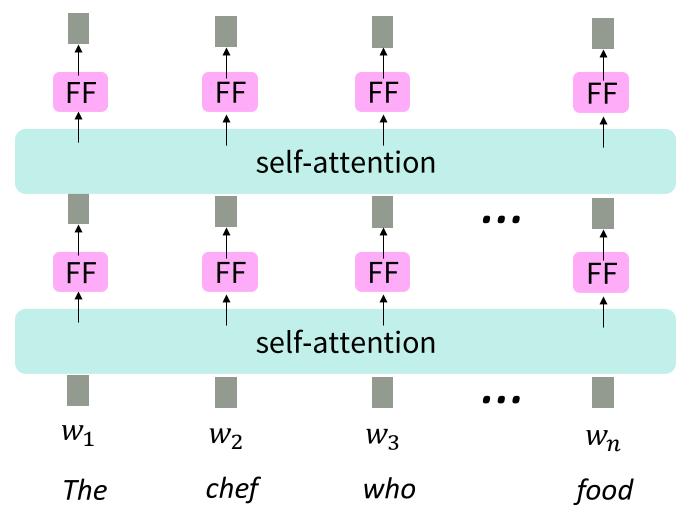
RoPE – From 2 to many dimensions

Just pair up the coordinates and rotate them in 2d (motivation: complex numbers)

Barriers and solutions for Self-Attention as a building block

Barriers

• Doesn't have an inherent notion of order!


Solutions

- Add position representations to the inputs

Adding nonlinearities in self-attention

- Note that there are no elementwise nonlinearities in self-attention; stacking more self-attention layers just re-averages value vectors (Why? Look at the notes!)
- Easy fix: add a **feed-forward network** to post-process each output vector.

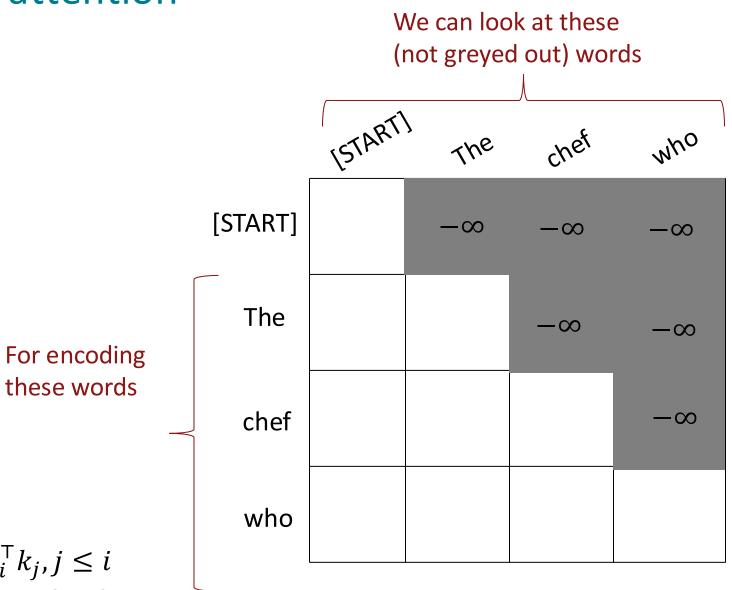
 $m_i = MLP(\text{output}_i)$ = $W_2 * \text{ReLU}(W_1 \text{ output}_i + b_1) + b_2$

Intuition: the FF network processes the result of attention

Barriers and solutions for Self-Attention as a building block

Barriers

- Doesn't have an inherent notion of order!
- No nonlinearities for deep learning magic! It's all just weighted averages


Solutions

- Add position representations to the inputs
- Easy fix: apply the same feedforward network to each selfattention output.

- Need to ensure we don't "look at the future" when predicting a sequence
 - Like in machine translation
 - Or language modeling

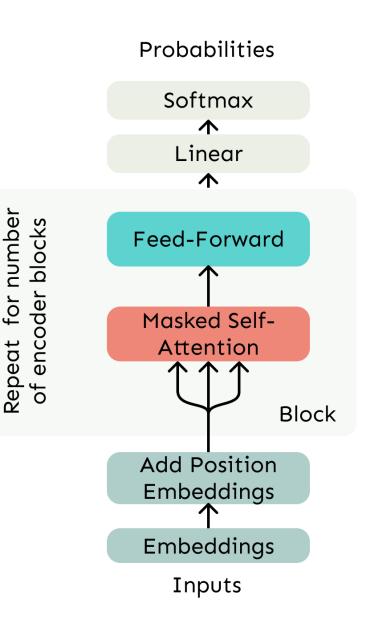
Masking the future in self-attention

- To use self-attention in decoders, we need to ensure we can't peek at the future.
- At every timestep, we could change the set of keys and queries to include only past words. (Inefficient!)
- To enable parallelization, we **mask out attention** to future words by setting attention scores to $-\infty$. $e_{ij} = \begin{cases} q_i^{\top} k_j, j \leq i \\ -\infty, i > i \end{cases}$

Barriers and solutions for Self-Attention as a building block

Barriers

- Doesn't have an inherent notion of order!
- No nonlinearities for deep learning magic! It's all just weighted averages

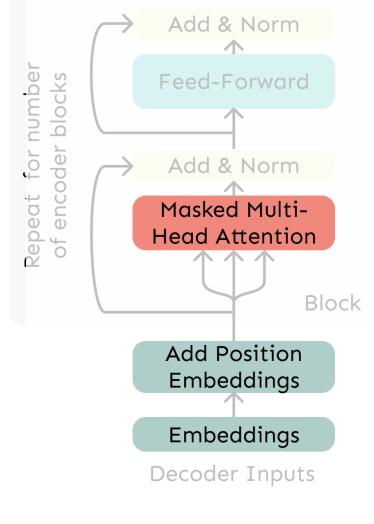

- Need to ensure we don't "look at the future" when predicting a sequence
 - Like in machine translation
 - Or language modeling

Solutions

- Add position representations to the inputs
- Easy fix: apply the same feedforward network to each self-attention output.
- Mask out the future by artificially setting attention weights to 0!

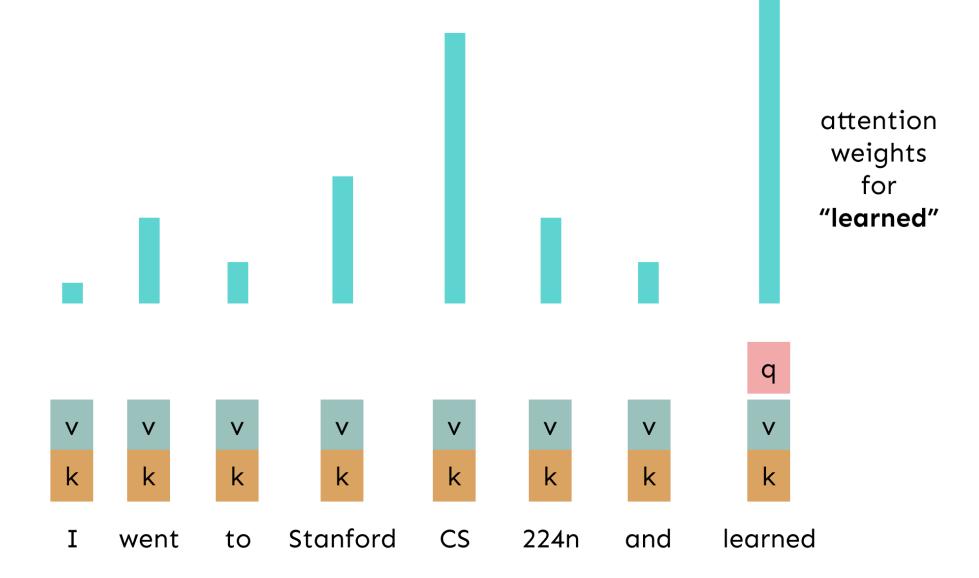
Necessities for a self-attention building block:

- Self-attention:
 - the basis of the method.
- Position representations:
 - Specify the sequence order, since self-attention is an unordered function of its inputs.
- Nonlinearities:
 - At the output of the self-attention block
 - Frequently implemented as a simple feedforward network.
- Masking:
 - In order to parallelize operations while not looking at the future.
 - Keeps information about the future from "leaking" to the past.

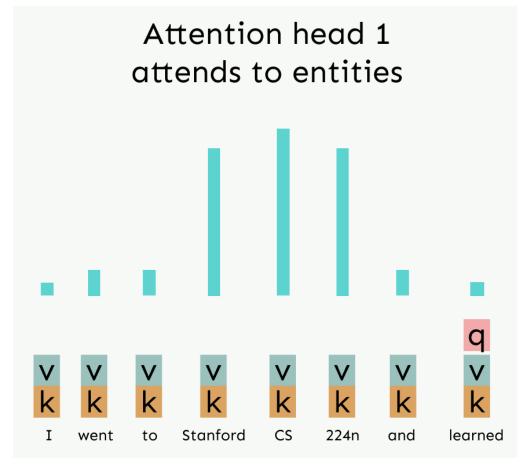


Outline

- 1. From recurrence (RNN) to attention-based NLP models
- 2. The Transformer model
- 3. Great results with Transformers
- 4. Drawbacks and variants of Transformers


The Transformer Decoder

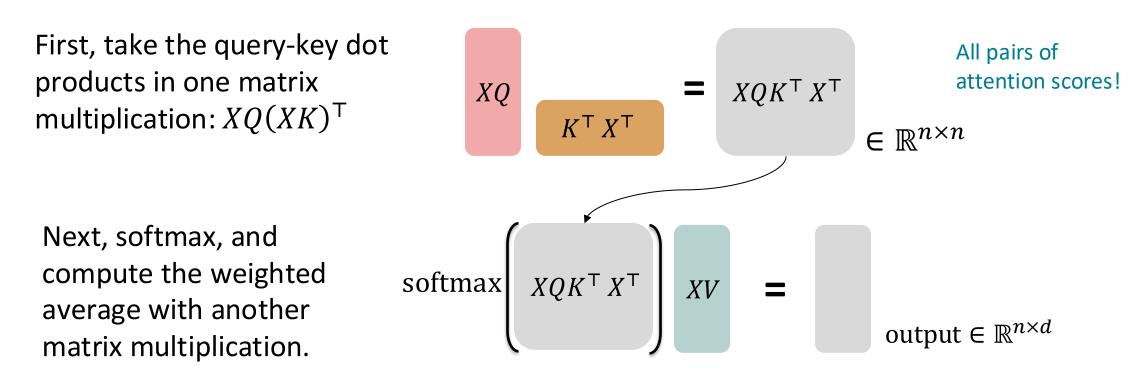
- A Transformer decoder is how we'll build systems like language models.
- It's a lot like our minimal selfattention architecture, but with a few more components.
- The embeddings and position embeddings are identical.
- We'll next replace our selfattention with multi-head selfattention.



Transformer Decoder

Recall the Self-Attention Hypothetical Example

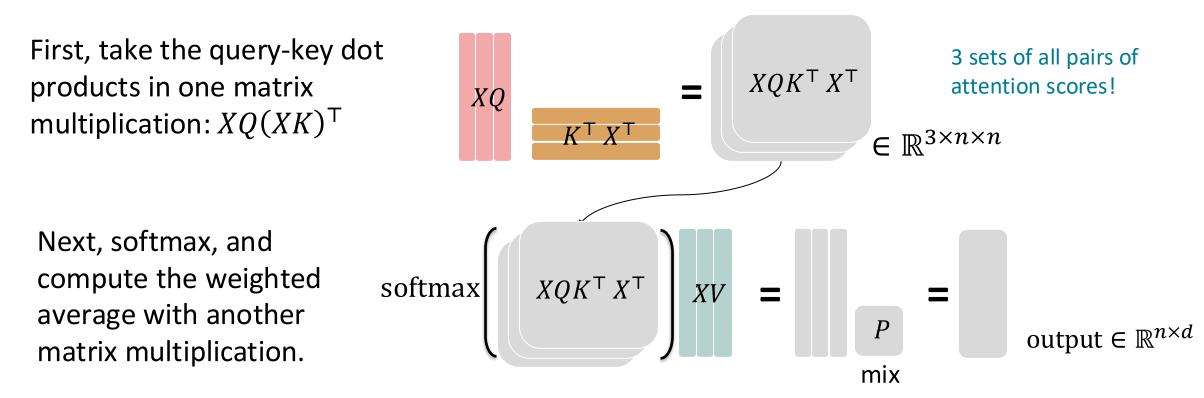
Hypothetical Example of Multi-Head Attention


Attention head 2 attends to syntactically relevant words

I went to Stanford CS 224n and learned

Sequence-Stacked form of Attention

- Let's look at how key-query-value attention is computed, in matrices.
 - Let $X = [x_1; ...; x_n] \in \mathbb{R}^{n \times d}$ be the concatenation of input vectors.
 - First, note that $XK \in \mathbb{R}^{n \times d}$, $XQ \in \mathbb{R}^{n \times d}$, $XV \in \mathbb{R}^{n \times d}$.
 - The output is defined as output = $\operatorname{softmax}(XQ(XK)^{\top})XV \in \in \mathbb{R}^{n \times d}$.



Multi-headed attention

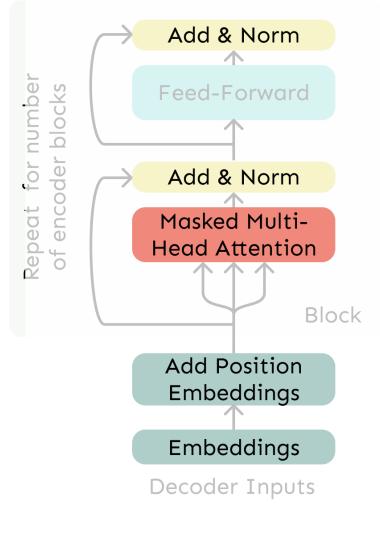
- What if we want to look in multiple places in the sentence at once?
 - For word *i*, self-attention "looks" where x[⊤]_iQ[⊤]Kx_j is high, but maybe we want to focus on different *j* for different reasons?
- We'll define **multiple attention "heads"** through multiple Q,K,V matrices
- Let, $Q_{\ell}, K_{\ell}, V_{\ell} \in \mathbb{R}^{d \times \frac{d}{h}}$, where *h* is the number of attention heads, and ℓ ranges from 1 to *h*.
- Each attention head performs attention independently:
 - $\operatorname{output}_{\ell} = \operatorname{softmax}(XQ_{\ell}K_{\ell}^{\top}X^{\top}) * XV_{\ell}$, where $\operatorname{output}_{\ell} \in \mathbb{R}^{d/h}$
- Then the outputs of all the heads are combined!
 - output = $[output_1; ...; output_h]Y$, where $Y \in \mathbb{R}^{d \times d}$
- Each head gets to "look" at different things, and construct value vectors differently.

Multi-head self-attention is computationally efficient

- Even though we compute *h* many attention heads, it's not really more costly.
 - We compute $XQ \in \mathbb{R}^{n \times d}$, and then reshape to $\mathbb{R}^{n \times h \times d/h}$. (Likewise for XK, XV.)
 - Then we transpose to $\mathbb{R}^{h \times n \times d/h}$; now the head axis is like a batch axis.
 - Almost everything else is identical, and the matrices are the same sizes.

Scaled Dot Product [Vaswani et al., 2017]

- "Scaled Dot Product" attention aids in training.
- When dimensionality *d* becomes large, dot products between vectors tend to become large.
 - Because of this, inputs to the softmax function can be large, making the gradients small.
- Instead of the self-attention function we've seen:


output_{ℓ} = softmax $(XQ_{\ell}K_{\ell}^{\top}X^{\top}) * XV_{\ell}$

• We divide the attention scores by $\sqrt{d/h}$, to stop the scores from becoming large just as a function of d/h (The dimensionality divided by the number of heads.)

output_{$$\ell$$} = softmax $\left(\frac{XQ_{\ell}K_{\ell}^{\mathsf{T}}X^{\mathsf{T}}}{\sqrt{d/h}}\right) * XV_{\ell}$

The Transformer Decoder

- Now that we've replaced selfattention with multi-head selfattention, we'll go through two optimization tricks that end up being :
 - Residual Connections
 - Layer Normalization
- In most Transformer diagrams, these are often written together as "Add & Norm"

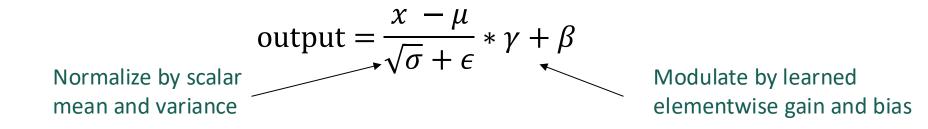
Transformer Decoder

The Transformer Encoder: Residual connections [He et al., 2016]

- Residual connections are a trick to help models train better.
 - Instead of $X^{(i)} = \text{Layer}(X^{(i-1)})$ (where *i* represents the layer)

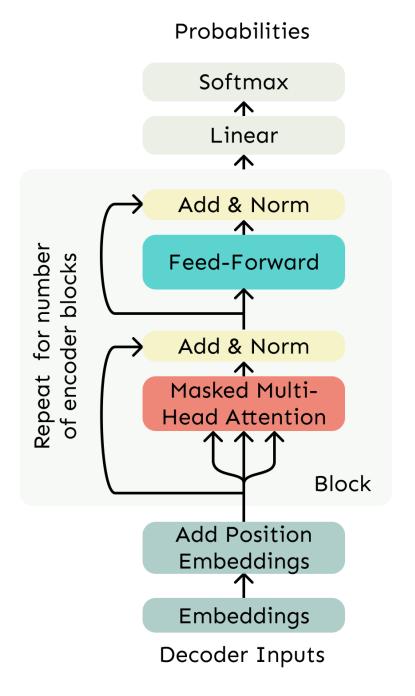
$$X^{(i-1)}$$
 — Layer $\longrightarrow X^{(i)}$

• We let $X^{(i)} = X^{(i-1)} + Layer(X^{(i-1)})$ (so we only have to learn "the residual" from the previous layer)

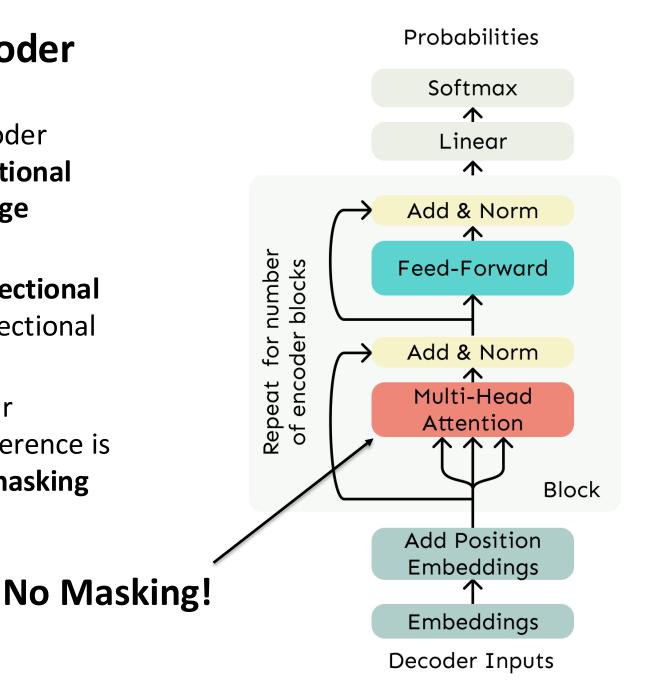

$$X^{(i-1)} \longrightarrow X^{(i)}$$

- Gradient is great through the residual connection; it's 1!
- Bias towards the identity function!

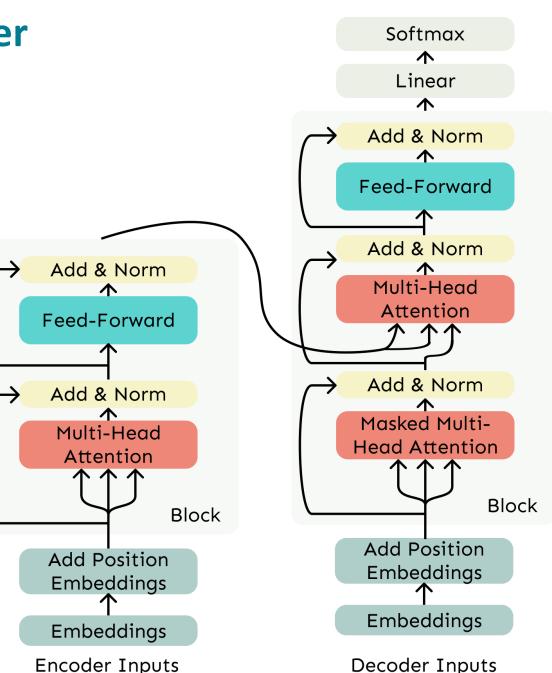
[no residuals] [residuals] [Loss landscape visualization, Li et al., 2018, on a ResNet]


The Transformer Encoder: Layer normalization [Ba et al., 2016]

- Layer normalization is a trick to help models train faster.
- Idea: cut down on uninformative variation in hidden vector values by normalizing to unit mean and standard deviation **within each layer**.
 - LayerNorm's success may be due to its normalizing gradients [Xu et al., 2019]
- Let $x \in \mathbb{R}^d$ be an individual (word) vector in the model.
- Let $\mu = \sum_{j=1}^{d} x_j$; this is the mean; $\mu \in \mathbb{R}$.
- Let $\sigma = \sqrt{\frac{1}{d} \sum_{j=1}^{d} (x_j \mu)^2}$; this is the standard deviation; $\sigma \in \mathbb{R}$.
- Let $\gamma \in \mathbb{R}^d$ and $\beta \in \mathbb{R}^d$ be learned "gain" and "bias" parameters. (Can omit!)
- Then layer normalization computes:

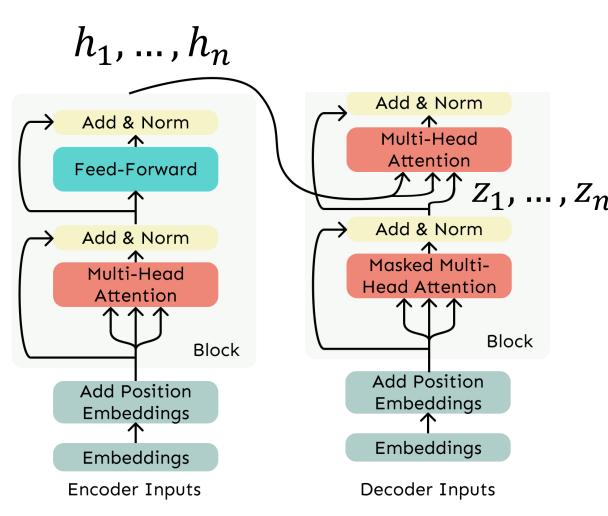

The Transformer Decoder

- The Transformer Decoder is a stack of Transformer Decoder Blocks.
- Each Block consists of:
 - Self-attention
 - Add & Norm
 - Feed-Forward
 - Add & Norm
- That's it! We've gone through the Transformer Decoder.

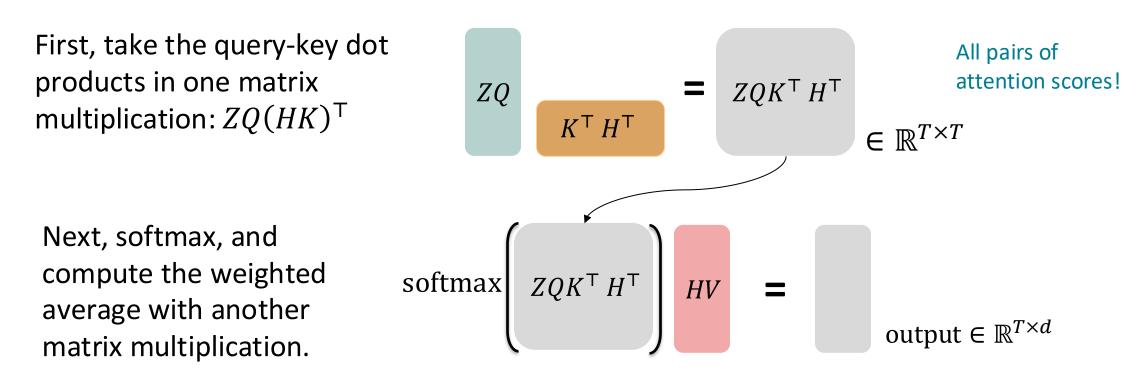

The Transformer Encoder

- The Transformer Decoder constrains to unidirectional context, as for language models.
- What if we want bidirectional context, like in a bidirectional RNN?
- This is the Transformer Encoder. The only difference is that we remove the masking in the self-attention.

The Transformer Encoder-Decoder


- Recall that in machine translation, we processed the source sentence with a bidirectional model and generated the target with a unidirectional model.
- For this kind of seq2seq format, we often use a Transformer Encoder-Decoder.
- We use a normal Transformer Encoder.
- Our Transformer Decoder is modified to perform crossattention to the output of the Encoder.

Probabilities


Cross-attention (details)

- We saw that self-attention is when keys, queries, and values come from the same source.
- In the decoder, we have attention that looks more like what we saw last week.
- Let $h_1, ..., h_n$ be **output** vectors **from** the Transformer **encoder**; $x_i \in \mathbb{R}^d$
- Let $z_1, ..., z_n$ be input vectors from the Transformer **decoder**, $z_i \in \mathbb{R}^d$
- Then keys and values are drawn from the **encoder** (like a memory):
 - $k_i = Kh_i$, $v_i = Vh_i$.
- And the queries are drawn from the **decoder**, $q_i = Qz_i$.

Cross-attention (details)

- Let's look at how cross-attention is computed, in matrices.
 - Let $H = [h_1; ...; h_T] \in \mathbb{R}^{T \times d}$ be the concatenation of encoder vectors.
 - Let $Z = [z_1; ...; z_T] \in \mathbb{R}^{T \times d}$ be the concatenation of decoder vectors.
 - The output is defined as output = $\operatorname{softmax}(ZQ(HK)^{\top}) \times HV$.

Outline

- 1. From recurrence (RNN) to attention-based NLP models
- 2. Introducing the Transformer model
- **3**. Great results with Transformers
- 4. Drawbacks and variants of Transformers

Great Results with Transformers

First, Machine Translation from the original Transformers paper!

Modal	BLEU		Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2		$1.0\cdot10^{20}$	
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6\cdot10^{18}$	$1.5\cdot10^{20}$	
MoE [32]	26.03	40.56	$2.0\cdot10^{19}$	$1.2\cdot10^{20}$	
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0\cdot10^{20}$	
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$	

37 [Test sets: WMT 2014 English-German and English-French]

[Vaswani et al., 2017]

Great Results with Transformers

Next, document generation!

	Model	Test perplexity	ROUGE-L			
	seq2seq-attention, $L = 500$	5.04952	12.7			
1	Transformer-ED, $L = 500$	2.46645	34.2			
	Transformer-D, $L = 4000$	2.22216	33.6			
	Transformer-DMCA, no MoE-layer, $L = 11000$	2.05159	36.2			
	Transformer-DMCA, $MoE-128$, $L = 11000$	1.92871	37.9			
	Transformer-DMCA, $MoE-256$, $L = 7500$	1.90325	38.8			
		*				
The old stand	dard Transforme	Transformers all the way down.				

[Liu et al., 2018]; WikiSum dataset

Great Results with Transformers

Before too long, most Transformers results also included **pretraining**, a method we'll go over next.

Transformers' parallelizability allows for efficient pretraining, and have made them the de-facto standard.

On this popular aggregate benchmark, for example:

GLUE

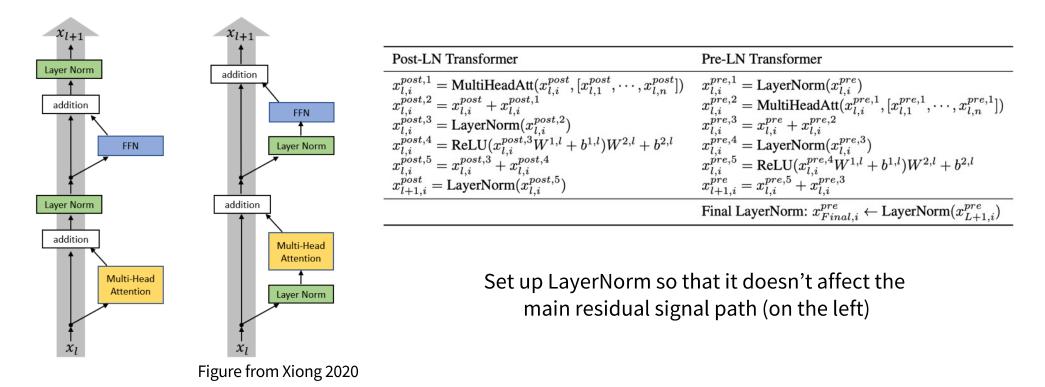
All top models are Transformer (and pretraining)-based.

	Rank	Name	Model	URL	Score
	1	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4		90.8
	2	HFL iFLYTEK	MacALBERT + DKM		90.7
+	3	Alibaba DAMO NLP	StructBERT + TAPT		90.6
+	4	PING-AN Omni-Sinitic	ALBERT + DAAF + NAS		90.6
	5	ERNIE Team - Baidu	ERNIE		90.4
	6	T5 Team - Google	T5		90.3

More results Thursday when we discuss pretraining.

Liu et al., 2018

Outline


- 1. From recurrence (RNN) to attention-based NLP models
- 2. Introducing the Transformer model
- **3.** Great results with Transformers
- 4. Drawbacks and variants of Transformers

What would we like to fix about the Transformer?

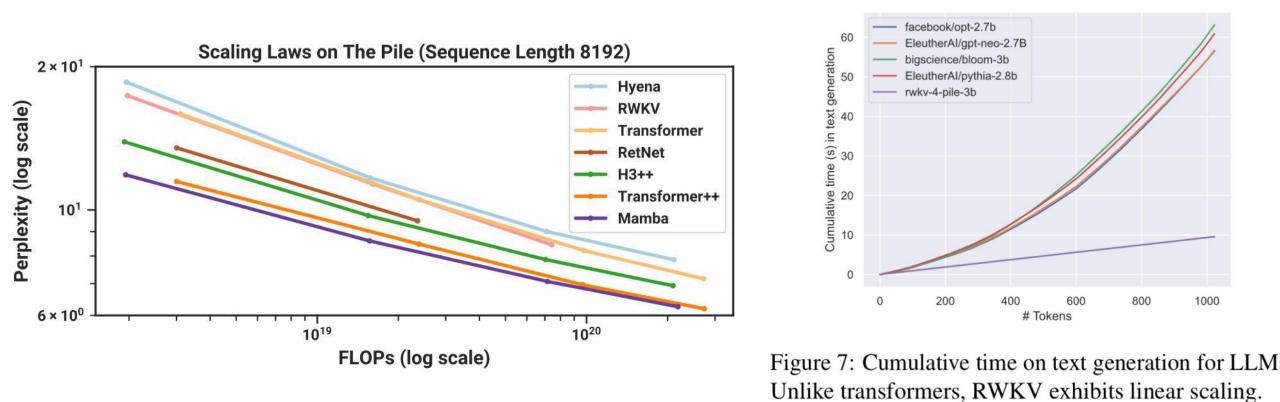
- Training instabilities (Pre vs Post norm)
- Quadratic compute in self-attention :
 - Computing all pairs of interactions means our computation grows **quadratically** with the sequence length!
 - For recurrent models, it only grew linearly!

Pre vs Post norm

The one thing *everyone* agrees on (in 2024)

Almost all modern LMs use pre-norm (but BERT was post-norm)

(One somewhat funny exception – OPT350M. I don't know why this is post-norm)

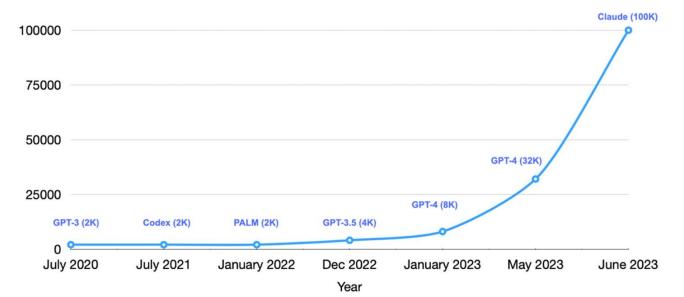

Quadratic computation as a function of sequence length

- One of the benefits of self-attention over recurrence was that it's highly parallelizable.
- However, its total number of operations grows as $O(n^2d)$, where n is the sequence length, and d is the dimensionality.

$$XQ = XQK^{\mathsf{T}}X^{\mathsf{T}} = XQK^{\mathsf{T}}X^{\mathsf{T}} \qquad \qquad \begin{array}{c} \text{Need to compute all} \\ pairs of interactions! \\ O(n^2d) \end{array}$$

- Think of *d* as around **1**, **000** (though for large language models it's much larger!).
 - So, for a single (shortish) sentence, $n \leq 30$; $n^2 \leq 900$.
 - In practice, we set a bound like n = 512.
 - But what if we'd like $n \ge 50,000$? For example, to work on long documents?

Back to the future – RNNs are back!



If you want *really* long context, RNNs provide this (linear complexity). Modern RNNs (RWKV, Mamba, etc) are getting better!

Do we even need to remove the quadratic cost of attention?

- As Transformers grow larger, a larger and larger percent of compute is **outside** the self-attention portion, despite the quadratic cost.
- In practice, production Transformer language models use quadratic cost attention
 - The cheaper methods tend not to work as well at scale.
 - Systems optimizations work well (Flash attention Jun 2022)

Do Transformer Modifications Transfer?

• "Surprisingly, we find that most modifications do not meaningfully improve performance."

Vauilla Transformer 22M 11.17 3.50 2.182 0.005 1.838 71.66 17.76 23.02 26.62 GeU 22M 11.17 3.88 2.17 \pm 0.003 1.838 71.66 17.78 23.02 26.63 Swish 22M 11.17 3.88 2.17 \pm 0.003 1.618 77.79 17.48 25.13 26.75 GUU 22M 11.17 3.09 2.17 \pm 0.003 1.614 74.40 17.42 24.34 27.12 GGUU 22M 11.17 3.53 2.17 \pm 0.003 1.636 8.67.6 1.67 2.55 2.59 SeGU 22M 11.17 3.33 2.127 \pm 0.003 1.799 75.40 1.707 24.34 26.63 Solut 22M 11.17 3.34 2.227 ± 0.001 1.507 72.45 17.65 3.44 26.59 Solut 22M 11.17 3.34 2.221 ± 0.000 1.550 70.24 17.76 3.44 26.59	Model	Params	Ops	Step/s	Early loss	Final loss	SGLUE	XSum	WebQ	WMT EnDe
$ GALU = 221M = 11.17 = 3.68 = 2.179 \pm 0.001 = 1.589 = 75.79 = 17.86 = 5.13 = 20.67 = 5.13 = 5.06 = 5.24 = 20.67 = 5.13 = 5.16 = 5.24 = 20.67 = 5.13 = 5.16 = 5.24 = 20.67 = 5.13 = 5.16 = 5.24 = 20.67 = 5.13 = 5.16 = 5.24 = 20.67 = 5.16 = 5.24 = 20.67 = 5.16 = 5.24 = 20.67 = 5.16 = 5.24 = 20.67 = 5.16 = 5.24 = 20.67 = 5.16 = 5.24 = 20.67 = 5.16 = 5.24 = 20.67 = 5.16 = 5.24 = 20.67 = 5.16 = 5.24 = 20.67 = 5.16 = 5.24 = 20.67 = 5.16 = 5.24 = 20.67 = 5.24 = 11.17 = 3.24 = 2.26 = 5.24 = 5.2$	Vanilla Transformer	223M			-					
Swish 22M 11.17 3.62 2.18 ± 0.003 1.47 7.77 1.74 $2.4.94$ 20.68 GU 22M 11.17 3.62 2.18 ± 0.06 1.742 1.742 0.761 0.88 0.742 0.754 0.762 0.754 0.762 0.754 0.775 0.754 0.775 0.754 0.775 0.754 0.775 0.754 0.775 0.754 0.775 0.7754 0.775 0.7754										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
SAU 223M 11.17 3.35 2.315 ± 0.004 1.448 8.76 16.76 2.75 2.70 25.9 17.00 25.17 1.003 1.79 75.4 17.97 24.34 26.35 15.00 04.14 2.005 1.798 75.4 17.97 24.34 26.36 15.00 04.14 2.00 223M 11.17 3.36 2.94 ± 0.019 1.850 72.45 17.52 24.34 26.39 25.00 04.15 17.97 24.34 26.39 25.00 04.15 17.97 24.34 26.39 25.00 04.15 17.97 24.34 26.39 25.00 04.15 17.97 24.34 26.39 25.00 04.15 17.52 17.52 25.00 04.15 17.52 17.52 25.00 04.15 17.52 17.52 25.00 04.15 17.52 17.52 25.00 04.15 17.52 17.52 25.00 04.15 17.52 17.52 25.00 04.15 17.52 25.52 10.00 04.15 17.52 17.52 17.50 25.50 17.50 17.52 17.50 25.50 17.5										
SwGLU 221M 11.17 3.33 2.127 ± 0.03 1.789 7.600 18.20 4.344 27.02 Signold 221M 11.17 3.38 2.127 ± 0.03 1.789 7.6.00 18.20 4.363 26.53 Signold 221M 11.17 3.43 2.201 ± 0.011 1.567 7.4.31 1.751 2.024 26.53 RNS Norm 222M 11.17 3.43 2.021 ± 0.003 1.567 7.4.31 1.751 2.024 2.033 1.619 7.545 1.74 4.072 2.639 Rescro + LayerNorm 221M 11.17 3.31 2.221 ± 0.009 1.545 7.032 1.75 2.032 2.031 Fabers / RNS Nerm 222M 11.17 3.33 2.155 ± 0.003 1.431 7.445 1.633 2.442 2.643 Signold 4.244 2.223 11.17 3.30 2.155 ± 0.003 1.537 7.545 1.63 2.444 2.6469 Bayers, de = 1.544, H = 2 2.234	ReGLU	223M	11.1T	3.57	2.145 ± 0.004	1.803	76.17	18.36	24.87	27.02
	SeLU	223M	11.1T	3.55	2.315 ± 0.004	1.948	68.76	16.76	22.75	25.99
	SwiGLU	223M	11.1T	3.53	2.127 ± 0.003	1.789	76.00	18.20	24.34	27.02
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LiGLU	223M	11.1T	3.59	2.149 ± 0.005	1.798	75.34	17.97		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
Recere + RMS Norm 22M 11.17 3.54 2.21 ± 0.09 1.675 7.033 1.7.22 2.02 2.6.1 24.1 Fragment 22M 11.17 2.55 2.824 0.012 2.076 8.56 61 1.6.2 3.4.44 2.020 2.6.3 124 layers, $d_{g} = 158$, $H = 6$ 22M 11.17 3.38 2.20 ± 0.007 1.6.13 7.4.58 1.7.59 2.6.15 2.7.10 8 layers, $d_{g} = 158$, $H = 5$ 22M 11.17 3.38 2.20 ± 0.007 1.6.13 7.4.58 1.7.59 2.4.60 2.6.56 1.9.9.7 4.5 1.0.5 1.5.1 7.4.5 1.7.6 2.4.60 2.6.56 1.9.9.7 4.5 1.0.5 1.5.1 7.4.5 1.7.6 2.4.60 2.6.66 1.9.9.7 4.5.6 1.4.7 2.4.5 1.7.6 2.4.6 1.5.7 7.4.5 1.7.6 2.4.60 2.6.66 1.9.9.7 4.5.6 1.4.7 2.4.5 1.7.6 2.4.6 1.5.7 7.4.5 1.7.6 2.4.6 1.5.7 7.4.5 1.7.6 2.4.6 1.5.7 7.4.5 1.7.6 2.4.6 1.5.7 7.4.5 1.7.6 2.4.6 1.5.7 7.4.5 1.7.6 2.4.6 1.5.7 7.4.5 1.7.6 2.4.6 1.5.7 7.4.5 1.7.6 2.4.6 1.5.7 7.4.5 1.7.6 2.4.6 1.5.7 7.4.5 1.7.7 1.5.7 2.4.6 1.5.7 7.4.5 1.7.7 1.5.7 2.4.6 1.5.7 7.4.5 1.7.7 1.5.7 2.4.6 1.5.7 7.4.5 1.7.7 1.5.7 2.4.6 1.5.7 7.4.5 1.7.7 1.5.7 2.4.6 1.5.7 7.4.5 1.7.7 1.5.7 2.4.6 1.5.7 7.4.5 1.7.7 1.5.7 2.4.6 1.5.7 7.4.5 1.7.7 1.5.7 2.4.6 1.5.7 7.4.5 1.7.7 1.5.7										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c} 18 \ \mbox{log} (-1) \$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Block sharing	65M	11.1T	3.91	2.497 ± 0.037	2.164	64.50	14.53	21.96	25.48
backlings Encoder only block sharing 140M 11.17 3.68 2.298 ± 0.023 1.929 60.01 61.23 23.02 26.23 Encoder only block sharing 141M 11.17 3.08 2.298 ± 0.023 1.929 2.082 67.03 16.13 23.04 26.03 Encoder only block sharing 141M 11.17 3.07 2.302 ± 0.020 1.052 7.053 7.04 1.013 2.024 2.053 7.04 1.013 2.024 2.053 7.04 1.013 2.024 2.053 7.04 1.013 2.024 7.04 1.013										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		20M	9.1T	4.37	2.907 ± 0.313	2.385	53.95	11.37	19.84	25.19
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		202M	9.11	3.92	2.320 ± 0.010	1.902	08.09	10.33	22.22	20.44
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		248M	11.1T	3.55	2.192 ± 0.002	1.840	71 70	17 72	24 34	26.49
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		24014	11.11	3.33	2.132 ± 0.002	1.640	11.10	11.12	24.04	20.45
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		248M	11.1T	3.57	2.187 ± 0.007	1.827	74.86	17.74	24.87	26.67
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
	Untied embeddings	273M	11.1T	3.53	2.195 ± 0.005	1.834	72.99	17.58	23.28	26.48
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Adaptive input embeddings	204M	9.2T	3.55	2.250 ± 0.002	1.899	66.57	16.21	24.07	26.66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Adaptive softmax	204M	9.2T	3.60	2.364 ± 0.005	1.982	72.91	16.67	21.16	25.56
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Mixture of softmaxes	232M	16.3T	2.24	2.227 ± 0.017	1.821	76.77	17.62	22.75	26.82
$ \begin{array}{c} Lightweight convolution 221M 10.4T 2.3T \pm 0.010 1.889 6.3.0T 14.86 2.0.02 24.73Synthesizer (dense) 21M 10.4T 2.3T \pm 0.010 1.889 6.3.0T 14.86 2.0.02 26.88Synthesizer (dense plus) 24M 11.4T 3.4T 2.334 \pm 0.021 1.962 61.03 14.2T 16.14 26.63Synthesizer (dense plus) 24M 12.0T 3.22 1.91 \pm 0.010 1.469 73.08 61.66 23.81 2.6.71Synthesizer (dense plus) 24M 12.0T 3.22 2.191 \pm 0.010 1.469 73.08 61.66 23.81 2.6.71Synthesizer (dense plus) 24M 10.1T 3.44 2.334 \pm 0.021 1.962 74.25 17.02 23.82 26.51Synthesizer (random) 24M 10.1T 3.44 2.334 \pm 0.012 1.968 62.78 1.539 23.55 2.6.2 2Synthesizer (random) 24M 10.1T 3.44 2.339 \pm 0.001 1.427 73.32 1.9.42 2.6.2 2Synthesizer (random) 24M 10.1T 3.44 2.339 \pm 0.001 1.427 73.32 1.9.42 2.6.42Synthesizer (random) plus) 222M 12.0T 3.53 2.355 1.99 0.004 1.457 73.24 1.7.08 2.4.08 2.6.3Synthesizer (random) plus) 222M 12.0T 3.53 2.355 1.9.6 0.01 1.458 75.24 1.7.08 2.4.08 2.6.39Synthesizer (random) plus) 222M 11.7T 3.18 2.18 \pm 0.007 1.828 75.24 1.7.08 2.4.08 2.6.39Universal regarders 1100M 11.7T 3.18 2.185 0.006 1.7.85 75.24 1.8.13 2.4.08 2.6.39Synthesizer (random plus) 222M 1.17T 3.18 2.1.35 0.005 1.7.85 75.34 1.8.13 2.4.08 2.6.39Synthesizer (random plus) 222M 1.17T 3.18 2.1.35 0.005 1.7.85 75.34 1.8.13 2.4.08 2.6.39Synthesizer (random plus) 222M 1.17T 3.18 2.1.35 0.005 1.7.85 75.34 1.8.13 2.4.08 2.6.39Synthesizer (random plus) 222M 1.17T 3.18 2.1.38 0.004 1.58 75.38 1.8.13 2.4.08 2.6.39Synthesizer (random plus) 222M 1.07 7.30 2.2.8 0.4.005 1.9.75 75.34 1.6.26 2.7.5 2.3.20Synthesizer (random plus) 222M 1.17T 3.18 2.1.38 0.004 1.1.58 75.34 1.6.38 2.3.02 2.5.3 2.3.31Synthesizer (random plus) 222M 1.0.7 0.30 2.2.8 0.5.005 1.0.18 0.6.34 1.6.36 2.3.2.7 3.2.3Synthesizer (random plus) 222M 1.0.7 0.30 2.2.8 0.5.005 1.0.18 0.6.38 2.3.02 2.5.3 2.3.31Synthesizer (random plus) 222M 1.0.7 0.30 2.2.8 0.5.005 1.0.18 0.6.34 1.6.36 2.3.2.7 3.2.3Synthesizer (random plus) 222M 1.0.7 0.30 2.2.8 0.5.005 1.0.18 0.6.38 2.3.02 0.5.30Synthesizer$	Transparent attention	223M	11.1T	3.33	2.181 ± 0.014	1.874	54.31	10.40	21.16	26.80
	Dynamic convolution	257M	11.8T	2.65	2.403 ± 0.009	2.047	58.30	12.67	21.16	17.03
	Lightweight convolution	224M	10.4T	4.07	2.370 ± 0.010	1.989	63.07	14.86	23.02	24.73
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Evolved Transformer	217M	9.9T	3.09	2.220 ± 0.003	1.863	73.67	10.76	24.07	26.58
	Synthesizer (dense)	224M	11.4T	3.47	2.334 ± 0.021	1.962	61.03	14.27	16.14	26.63
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
		243M	12.6T	3.01	2.180 ± 0.007	1.828	74.25	17.02	23.28	26.61
Synthesizer (random plus 292M 12.07 3.42 2.186 \pm 0.007 1.828 75.24 17.08 24.08 26.39 universal Transformer 84M 40.07 0.88 2.406 ± 0.036 2.633 70.13 14.09 10.05 22.31 Mixture of caprets 64M 11.77 3.32 2.148 ± 0.006 1.785 74.55 18.13 24.08 26.39 Witch Transformer 1100M 11.77 3.12 2.135 ± 0.007 1.756 76.35 18.02 26.19 26.51 Funnel Transformer 223M 1.97 4.30 2.28± 0.008 1.918 67.34 16.26 2.77 2.330 Weighted Transformer 28M 1.07 0.30 2.78± 0.021 1.989 6.04 1.638 2.327 2.63.03										
$ \begin{array}{c} \mbox{Universal} Tanaformer & 84M & 400T & 0.88 & 2.406 \pm 0.036 & 2.053 & 70.13 & 14.09 & 19.05 & 22.51 \\ \mbox{Mixture of experts} & 648M & 11.7T & 3.20 & 2.148 \pm 0.006 & 1.785 & 76.55 & 18.13 & 24.08 & 26.694 \\ \mbox{Switch Tansformer} & 1100M & 11.7T & 3.18 & 2.135 \pm 0.007 & 1.758 & 75.38 & 18.02 & 26.19 & 26.81 \\ \mbox{Funnel Transformer} & 222M & 1.9T & 4.30 & 2.28 \pm 0.008 & 1.018 & 6.734 & 16.26 & 2.275 & 23.30 \\ \mbox{Weighted Transformer} & 280M & 71.0T & 0.59 & 2.78 \pm 0.021 & 1.989 & 60.44 & 16.98 & 23.02 & 26.30 \\ \end{array}$		202M	12.01	0.42	2.100 E 0.007	1.020	10.24	11.08	A-4.08	20.39
		84M	40.0T	0.88	2.406 ± 0.036	2.053	70.13	14.09	19.05	23.91
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mixture of experts	648M	11.7T	3.20	2.148 ± 0.006	1.785	74.55	18.13	24.08	26.94
Weighted Transformer $280M$ 71.0T 0.59 2.378 ± 0.021 1.989 69.04 16.98 23.02 26.30 26.30										
Product key memory 421M 386.6T 0.25 2.155 ± 0.003 1.798 75.16 17.04 23.55 26.73										
	Product key memory	421M	386.6T	0.25	2.155 ± 0.003	1.798	75.16	17.04	23.55	26.73

Do Transformer Modifications Transfer Across Implementations and Applications?

Sharan Narang*	Hyung Won Chung	Yi Tay	William Fedus
${\bf Thibault} \ {\bf Fevry}^\dagger$	${\bf Michael} \; {\bf Matena}^{\dagger}$	Karishma Malkan †	Noah Fiedel
Noam Shazeer	${\bf Zhenzhong}{\bf Lan}^\dagger$	Yanqi Zhou	Wei Li
Nan Ding	Jake Marcus	Adam Roberts	$\mathbf{Colin} \; \mathbf{Raffel}^\dagger$

Parting remarks

- Pretraining next!
- Good luck on assignment 4!
- Remember to work on your project proposal!