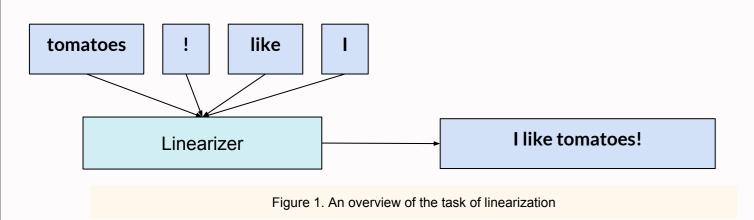


Sentence Unscrambler: Exploring Deep Learning Models for Word Linearization CS224N Natural Language Processing with Deep Learning


Kent Vainio – kentv@stanford.edu, Jason Zheng – jzzheng@stanford.edu, Sonja Johnson-Yu – sonjyu@stanford.edu

Overview

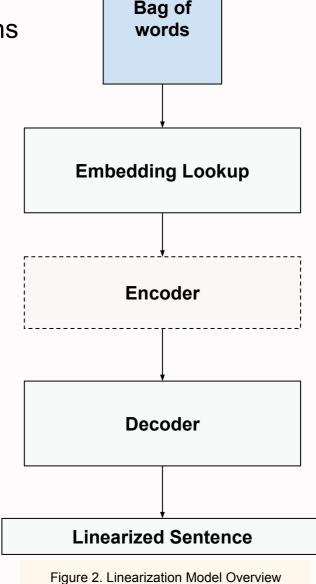
Linearization: given a bag of words, order them into a grammatical sentence.

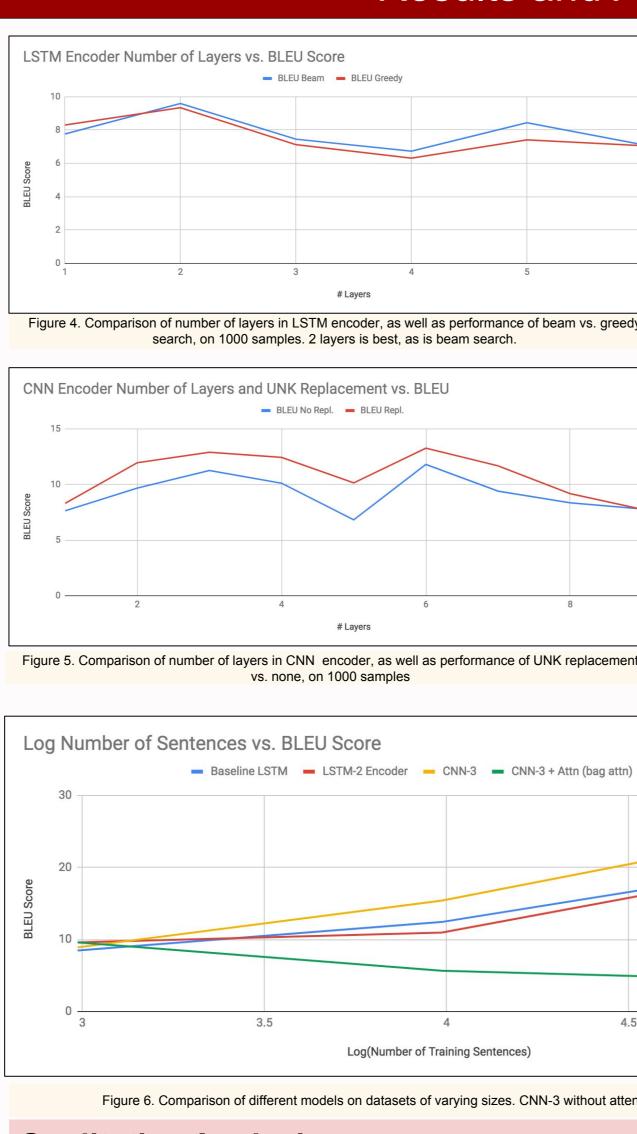
- Traditional approach uses statistical models
- Recent approaches use LSTMs [1]
 - With or without syntactic linearization (building syntax trees) [2]
- Syntax-free linearizer avoids parsing error and is more lightweight

Project Goal: Improve syntax-free neural linearizer using encoders and attention.

Dataset and Approach

1) Dataset = three NLTK corpora


- Gutenberg, Brown, Reuters
- multiple genres & time periods
- omit sentences with > 20 tokens
- 96,805 sentences
- dataset sizes:
 - 1000/10,000/96,805


Input Generation 2)

- Split into tokens • words + punctuation
- Randomize order

Run through model 3)

- embedding lookup
- optional encoder • with or without attention
- decoder
 - greedy or beam search
 - with or without random <unk> replacement

Qualitative Analysis

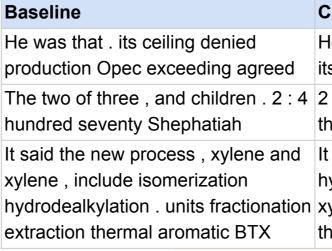


Figure 7. Outputs of baseline and CNN-3, in comparison to reference sentences. The CNN-3 notably outperforms the baseline.

Results and Analysis Experiments: BLEU Beam BLEU Greedy baseline LSTM *n*-layer bidirectional LSTM encoder n-layer CNN encoder greedy vs. beam search • w/ vs. w/o <unk> replacement • w/ vs. w/o attention # Lavers w/ vs. w/o highway layer **Optimal # of Layers:** • LSTM: 2 • CNN: 3 **Follow-up Experiments:** (5 trials on 970 samples) • CNN Highway: 6.57 CNN No Highway: 7.51 (1 trial on 9700 samples) # Layers • CNN-3: 14.18 • CNN-6: 12.85 <u>Summary</u> - Baseline LSTM - LSTM-2 Encoder - CNN-3 - CNN-3 + Attn (bag attn) CNN-3 yields highest **BLEU** scores • Attention leads to poorer performance • LSTM encoder performs similarly to baseline 45 Log(Number of Training Sentences) Figure 6. Comparison of different models on datasets of varying sizes. CNN-3 without attention performs best.

CNN-3	Reference	Evaluation
He denied that Opec was exceeding ts agreed production ceiling .	He denied that Opec was exceeding its agreed production ceiling .	Perfect
2 : 4 The children of Shephatiah , hree hundred seventy and two .	2 : 4 The children of Shephatiah , three hundred seventy and two .	Perfect
t said the new units and include hydrodealkylation , isomerization , kylene xylene . extraction process hermal aromatic fractionation BTX	It said the new BTX process units include aromatic extraction , xylene fractionation , xylene isomerization and thermal hydrodealkylation .	Bad, <unk> problem</unk>
handling and ONN 2 in comparison to reference as	stances. The CNN 2 patch is outparformed the baseline	

- 3-Layer CNN Encoder performs best

- Challenges for the model:
 - rare vocabulary
 - very long sentences

Experimental Model Summary

			CNN-3
Baseline	LSTM-2	CNN-3	Encoder + Bag
LSTM	Encoder	Encoder	Attention
8.46	9.59	8.89	9.59
12.42	10.95	15.38	5.65
20.4	20.19	25.06	4.29
	LSTM 8.46 12.42	LSTM Encoder 8.46 9.59 12.42 10.95	LSTM Encoder Encoder 8.46 9.59 8.89 12.42 10.95 15.38

Figure 8. Comparison of different models on datasets of varying sizes. Bolded are the models that performs best for given dataset size.

- Char-LSTM for handling <unk>s
- Transformer model
- Pointer-generator networks

[1] Alexander M. Rush, Allen Schmaltz, and Stuart Shieber. Word ordering without syntax. Conference on Empirical Methods in Natural Language Processing(EMNLP-16). Austin, Texas, pages 2319-2324, 2016. [2] Yue Zhang, Linfeng Song, and Daniel Gildea. Neural transition-based syntactic linearization. INLG 2018 (International Natural Language Generation Conference). Tilburg, Netherlands, 2018.

Conclusion

• Improves on baseline by ~4.5 BLEU points • LSTM Encoder performs similarly to baseline • UNK replacement yields higher BLEU score • Beam search yields higher BLEU score Attention decreases BLEU score on full dataset

Future Work

References