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Abstract

Modeling the emotional cognition process from text remains an unsolved building
block for developing human-centered Artificial Intelligence (AI). Though neural
machine translator, QA agent built by deep learning models could help goal-driven
language modelings, but could not easily interpret the emotion cognition process
underlying the language. A majority of existing literature in understanding emotion
cognition process focuses on modeling using acoustic and visual features rather
than linguistic ones. Few study exist in the domain of understanding the continuous
emotion cognition process of text. Here, we want to close the gap. In this paper,
we implement four different deep learning models with the Stanford Emotional
Narratives Dataset (SENDv1) 1 to predict emotion valence from linguistic features
and to reconstruct emotion from text. Our transformer-based model achieves a
CCC score of 0.47 on the Test set, which is higher than the CCC score of 0.46 of
human’s ratings with audio, visual and linguistic features.

1 Introduction

"Hi Alexa, I’m tired today since I had to take care of my mom in hospital. Please play me some
music." - Imagine this is the conversation you have with your personal home assistant Alexa, would
you like to see her playing rock music as you usually like, or some country music to relax? When
John comes back home, he complains about his tedious works at the construction site, and asks his
home robot to cook for him instead. Probably what he wants is a piece of well-cooked steak instead
of a cold salad with ranch sauce. Understanding human emotions can help robots or any other AIs
make more user-friendly decisions.

Emotion cognition from linguistic cues is a crucial part of Human-centered AIs. Without emotion
understandings, AIs could not successfully co-exist with people [1, 2]. Language is the carrier
when conveying your emotion to other people [3]. Various research showed that data from social
platforms could potentially predict one’s psychological traits [4]. Users’ emotion valence is also

1This dataset is not released from its original paper. Contact desmond_ong@ihpc.astar.edu.sg for the
dataset.
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highly correlated with their daily updates in those platforms throughout a year. For example, the
national happiness score could be predicted by Facebook data [5].

Using human ratings of emotion valence of videos to train models helps us understand the emotion
cognition process of text. Studies showed that human’s cognitive and affective development start
at an early stage of one’s brain evolution [6]. Using multi-modalities, including visual, audio and
linguistic inputs, one is capable of determining other people’s emotion valences. Fundamentally,
human’s capability of emotion cognition is from the training process of daily social communications.
For example, when your friend is weeping while telling you a heart-broken story, you are able to
associate this anecdote with low emotional valence, which, in turn, means sadness. Similarly, when
we are reading the inspiring speech I Have A Dream from the American baptist minister Martin
Luther King Jr., our mind is picturing the facial expressions of Martin and imagining the pitches of
his voice while interpreting his emotion. Thus, the training process of a model should involve the true
ratings that are annotated using multi-modalities inputs. The Figure 1 shows the sentiment analysis
of our model on the speech I Have A Dream.

Figure 1: Left: The sentiment reconstruction of the inspiring speech I Have A Dream from the
American baptist minister Martin Luther King Jr.. We can see the emotion valence of the speech goes
up at the end. This matches with the actual speech scripts, as dream is emphasised at the end of the
speech. On the left, we overlay three example of windowed words. Negative words are found during
the turns of the emotion valence. Right: The changes of emotion valences produced by the indicated
windows.

Models for predicting the emotion valence of texts should be trained using the true ratings, which is
rated using visual, audio and linguistic features. This simulates the cognition process of our brain in
emotion cognition of text. When reading texts, humans interpret the emotion from text only, but their
emotion cognition ability is learned by the true communication of emotion with other people. Various
deep learning models were developed to predict emotion valence of video inputs which contains
visual and audio features [7, 8, 9]. A few studies focused on the linguistic features. However, these
models are usually trained by hand-labelled data, which, in fact, is labelled by human and only using
text itself. This is not matching the emotion cognition process in human’s brain. When reading the
text, one tends to reconstruct the facial and audio features and use those features to interpret the
emotion. Our study aims to close the gap. Using the SENDv1 dataset, we train our model with only
the linguistic inputs but with the true ratings which are rated using visual, audio and linguistic inputs
by human.

Only a small portion of researchers in the research community focuses on the time-series modeling
of emotion cognition. Few models are capable of capturing the dynamics of emotion as they develop
over time, which is referred as time-series emotion recognition. Specifically, time-series emotion
recognition modeling takes previous outputs with the dynamic context of the current time point. The
model considers the emotion propagated through time. For example, when we are annotating videos
with texts, annotating each frame is not a separated task. In fact, information about tagging is likely
to be passed across frames. Using time-series modelings, the process of information propagating
through time could be modelled more effectively [10].

In the rest of this paper, we will provide a overview of existing modeling methodologies in related
fields. Then, we will introduce our approach of constructing models for reconstructing emotion
valence from linguistic features, includes our baseline, feature parsing and four deep learning models.
Next, we will discuss the performance of each model, and interpret our results. At the end, we will
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provide the contributions our paper brings that could potentially help the research community to
better understand the emotion cognition process of human.

2 Related Works

Deep neural networks could learn to predict dimensional emotional valence and arousal [11, 12].
In the Audio/Visual Emotion Challenge and Workshop (AVEC 2016), studies showed that using
machine learning algorithm, computers could automate the process of recognizing emotional arousal
and valence [12]. Researchers found that using Convolutional Neural Networks (CNN), they were
able to make predictions on valence ratings on videos using visual features. Likewise, other studies
demonstrated that using deep neural network, computers were able to recognize emotion in speech
[13, 14].

Recurrent neural networks (RNN) were widely used in studies of making continuous predictions.
RNN assumes that the predictions at current state depend on the predictions made in the previous
states [15, 12]. Studies in natural language processing proved that RNN was a powerful model
for sequential data [16]. Similarly, studies proved that RNN, combined with convolutional neural
networks, increased the accuracy in video-based emotion recognition [17]. Likewise, researchers
developed an automatic emotion recognition framework using Long Short-Term Memory Recurrent
Neural Networks (LSTM) with linguistics, audio and visual features. They proved that their model
were able to discriminate between high and low levels of arousal, expectation, power, and valence
[18].

LSTMs were widely used in making continuous predictions for visual cognition such as natural
language descriptions [19, 20], video paragraph captioning [21], video classifications [22] and
video-based traffic prediction [23]. Specifically, LSTM had been proved to be successful in making
predictions in emotion valence in video-based dataset [24, 18]. Studies claimed that LSTM could
learn temporal dynamics and had distinct advantages over traditional deep neural networks [23]. Un-
like RNN, LSTM simulated the actual process of human’s emotion cognition process by considering
how the emotion evolved over time in optimized contextual knowledge. Researchers successfully
used LSTM to predict continuous emotion valence and arousal scores using features from audio,
facial videos, ECG and EDA [24]. Likewise, previous literature stated that LSTM showed large
improvements in grammaticality in the generation of natural language descriptions of videos [19].

Transformer became the state-of-the-art de facto to the natural language process (NLP) community
[25]. The Transformer model is constructed on attention, which embeds each word or window in a
sentence with the words surrounding the center words. This closely models the human interpretation
process of languages, as human often pay attention to keywords when interpreting the meaning of text
[26]. The Transformer-based models are used in various tasks, including neural text comprehension
[27], QA agent [28] and neural machine translators [29]. In our paper, we propose four different
models based on Transformer, LSTM and auto-regression models that are the state-of-the-art models
in the NLP community.

3 Approach

In this part, we will discuss our approach in detail, including how we construct the models and
the reasons behind it. It aims to provide some insights to develop models that could reconstruct
continuous emotion valence of the narrator from the linguistic inputs. We provided a detailed
structural diagram for all models in the appendix.

3.1 Evaluation Method

We used the Concordance Correlation Coefficient (CCC [30]) as the metric to evaluate our models.
It compares the dynamic similarities of two lists of time-series data points. It was widely used in
previous studies in modeling time-series data [31]. The CCC for two time-series vectors X and Y is
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calculated as:

CCCXY ≡ 1−
E
[
(X − Y )2

]
E [(X − Y )2] |setting ρXY =0

=
2ρXY σXσY

σ2
X + σ2

Y + (µX − µY )2
(1)

where ρXY ≡ cov(X,Y )/(σXσY ) represents the (Pearson) correlation coefficient, and µ and σ
indicate the average and standard deviation respectively. CCC measures agreement between two
curves, where 1 means that the two time-series are in perfect agreement and 0 means that they are
uncorrelated.

3.2 Human Baseline

In the SENDv1 dataset, we have human ratings of emotional valence for each video. For each of
them, we have about 20 samples. Our baseline CCC is the CCC achieved by human annotators. The
mean and standard deviation of observer CCC on the training set was .45± .14, the mean (and SD)
observer CCC on the validation set was .47± .120, and finally, the mean (and SD) observer CCC
on the test set was .46± .14.

3.3 CNN Features Fusion

Most current research fused the word embedding in a window by taking the point-wise average of
every vector in the window [32]. However, this is a naive way of representing the sentiment meanings
of a window. We introduce a more systematic way for the window level embedding by adding a CNN
layer before feeding into the deep neural network. For every time window, we generate the word
embedding using GloVe. We padded every window with 0 so they have equal length of words. Then,
we used a CNN layer with a Highway network to reduce a window embedding to a single vector. We
used 1 dimensional convolution with max pooling for our CNN with one linear projection layer with
a gated output layer for the Highway network. ReLu layer is not used as the word embedding from
GloVe could result in negative values.

Figure 2: Left: Graphical illustration of overlap-window embedding CNN layer. Right: General
model architecture of our LSTM variants. In this figure, we set the encoder to be a Transformer, and
the decoder to be a one layer LSTM. This structure is shared among all of our LSTM variants and the
Transformer model. The encoder and decorder will be different for these models. See Appendix A
for more details.
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3.3.1 Long Short-Term Memory Networks

As we described in our previous sections, the Long Short-Term Memory (LSTM) network performs
well in language related tasks. It captures the information propagation through time. It simulates the
process of emotion expression of human, as human’s emotion largely depends on the emotion state
from the previous time point.

In this paper, we adopted the framework that is used before in predicting cognition process of
empathy [32]. We re-implemented three LSTM variants with the "vanilla" LSTM. In addition to
the vanilla LSTM, we implemented auto-regressive LSTM (AR-LSTM) which would explicitly
make a prediction on the current time point based on the prediction from the last time point. We
also implemented the Encoder-Decoder LSTM (ED-LSTM) which is applied in many other fields,
including language translations.

We constructed all of our LSTM variants in an encoder-decoder way. These LSTM variants differ in
the decoder part. For all of our models, we first feed in the window embedding for every time window.
We then use the encoder layer to again embed the window. Next, we compute a local attention layer
using a Multi-layer Perceptron with an attention window of length l which has been proved to be
effective in building cognitive models [32]. This means that, at time t, we compute a set of l attention
weights which are then used to weight the hidden states at the previous timesteps, to give a context
vector ct:

ht = Encoder(X1:t) (2)
{at−l+1, . . . , at} = Optimizer(Xt) (attention weights) (3)

ct =

l−1∑
j=0

at−jht−j (context vector) (4)

These outputs are then fed into the decoder layer which is different across our variants. For LSTM,
we used a linear layer as the decoder. For AR-LSTM, we used a linear layer which takes the current
network output as well as the prediction from last time point. Finally, for ED-LSTM, we used another
LSTM decoder layer which takes the current encoder output and the hidden state output from the last
time point to make prediction.

LSTM: Ŷt = MLP(ct) (5)

AR-LSTM: Ŷt = MLP(ct, Ŷt−1) (6)

ED-LSTM: Ŷt = LSTM(ct, ĥt−1) (7)

We used the mean squared error (i.e., MSE(Ŷ1:T , Y1:T ) =
∑T
t=1(Ŷt − Yt)2) as the loss function to

be minimized.

3.3.2 Transformer

As stated in previous sections, the Transformer model is the state-of-the-art language modeling
methodology in the community. It closely simulate the process of language understanding process of
humans. As for interpreting the emotion, one should expect that annotators pay close attention to
keywords from the text inputs. In this paper, we built our Transformer model and attach an output
header to it. The Transformer model shares the same structure as our LSTM models. However for the
encoder layer, we implement a Transformer network which computes the embedding only based on
self-attention scores. The Transformer model we implemented is a multi-head transformer. It has 6
identical sub-encoder layers, each of which contains an attention layer and a feed-forward layer. The
connection layer between encoder layers is a linear normalization layer with a dropout rate of 0.1.
The Transformer model encodes the original window embedding from CNN, which is then fed into
an LSTM decoder layer, the same one as the decoder of the ED-LSTM model.

3.3.3 Customized Loss Function

Besides mean squared error, we also implemented a customized loss function using CCC value.
Every video outputs a predicted CCC score, which is calculated from predicted ratings. The number
of point estimates in each video corresponded to the number of windows. The model was trained
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by maximizing the sum of CCC scores over all videos. The CCC result on evaluation set slightly
improved compared to MSE loss, which conformed to our expectation as the goal was to directly
maximize CCC score.

4 Experiments

4.1 Dataset

The dataset we used contains 193 video clips. We divided the current dataset into Training (60% of
the dataset, 117 videos), Test (20% of the dataset, 38 videos) and Evaluation (20%, 38 videos) sets.
This dataset contains videos, acoustic sound waves and transcripts for every video.

We are interested only in linguistic features. However, acoustic features are partially used in force
alignment2, which is used to generate corresponding time stamps for words. We used GloVe 300 to
embed words. After we got the embedding vector for all the words, we replaced NaN values with 0
to avoid undefined behaviors. We normalized the ratings, originally ranging from 0 to 100, down to 0
to 1. We also implemented overlap windows to generate more features.

4.2 Model Configuration

Based on our hyper-parameter tuning results, our CNN embeds a window, which originally contains
a sequence of 300-dimensional GloVe word vectors, into a 256-dimensional vector. Because our
main goal is to provide insights in constructing emotion cognition model, parameter tuning is not our
priority. To minimize our training time, all our LSTM layer was a single layer LSTM with various
local attention length of 3. All of our LSTM had a hidden size of 256. Our Transformer model had 6
encoder layers with hidden size of 128. The feed forward layer in Transformer had a hidden size of
128. We trained all our models with an initial dropout rate (on the input embedding) of 0.1, which
helped us regularize the learnt weights and help prevent over-fitting [33]. All of our models support
training in CUDA. We trained our models using NV6 virtual machine (1 x M60 GPU (1/2 Physical
Card)) provided by Microsoft Azure. The max epoch we set was 1000. The training time for each of
our models was less than 1 hour.

4.3 Results And Analysis

4.3.1 Evaluation And Tuning

In this section, we will describe the results from our training process. It includes model performances
on the evaluation set using MSE loss. All these results are calculated after hyper-parameters tuning.
We used MSE in this stage since the MSE loss is asymptotically the same as CCC loss function. As
the MSE loss goes to 0, the CCC will go to its max value, 1. Since we are predicting a continuous

Figure 3: Left: Loss on Evaluation set of all models. Right: CCC on Evaluation set of all models.

2https://github.com/ucbvislab/p2fa-vislab
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Figure 4: Left: Table that shows the comparison of performances of different models using our tuned
parameters. The performance of Transformer is the best. Right: Plot of our predictions against
the target value of one video in the evaluation set. The CCC for this is 0.98. These two plots are
generated using MSE loss function. We used MSE to tune our hyper-parameters.

rating, we plotted the MSE loss, correlation between prediction and target curves, and CCC score of
our prediction against the epoch in our training process. All these were evaluated on the Evaluation
set. The performance of the Transformer model was the best. The "vanilla" LSTM performed
relatively worse than the others. However, the loss of each model converges during the training
process.

Our models, including LSTM, AR-LSTM, ED-LSTM and Transformer, are trained for 1000 epochs
and evaluated on the evaluation set. They are all trained with the same random seed and the same
training dataset. The training time is approximately 1 hour and is very close for each model.

Based on the results, Transformer outperformed all other models with a highest CCC of 0.49 with
MSE loss on the Evaluation set. With partial information from linguistic and audio features, the
results obtained from Transformer model is close to human performance in the Test set. For a single
video, Transformer can reach a maximum CCC of 0.98. We plotted one example of our predictions
against the true values based on the Transformer model (CCC=0.98).

The predicted curve are following the true values closely. This is expected as we are having previous
information passed along as making new predictions in the future time points. Transformer model
is out-performing other RNN variants. This is expected as Transformer provide a better window
embedding at each time point.

4.3.2 Customized Loss Function And Testing

We implemented our own CCC loss function. Based on the results, we found that the CCC loss
function tended to work better in the beginning of the training process, But it had much higher
variance in the later training process. MSE loss function converged to a lower loss in the training
process. However, CCC loss function achieves higher accuracy in Evaluation set in the early stage of
the training process. We compared the performance of models with MSE and CCC loss function in
the Test set. We found that MSE loss gets better results. The Transformer model is reaching 0.47 in
the Test set.

4.4 Sentiment Analysis

In order to interpret the model, we collected a natural emotion story online. We then generated a word
embedding file for each word in the file. We also annotated each word with a starting and ending
timestamp. We set the story to be at a speed of 0.1 second per character. Between each word, there is
a 0.2 second pause. Based on the plot and the actual words in the windows, we conclude that sudden
turns in the sentiment changes are well-captured by the model. Turn words like But and Suddenly
tend to change sentiment trends in this example. We can also see that negative words cause turning in
the sentiment trends as well.
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Figure 5: Left: The sentiment reconstruction of a personal anecdotes available online 4. Right: The
changes of emotion valences produced by the indicated windows.

4.5 Conclusion

In order to recover the emotion hidden in the text, researchers need to overcome various challenges
of modeling emotion cognition process continuously. In this paper, we first propose four different
deep learning models to predict the emotion of linguistic inputs. The performance of the Transformer
model is close to our human annotators who rate the emotion based on visual, audio and linguistic
inputs. We conclude that our Transformer model could potentially behave the same way as brain does
in reconstructing emotion valence from text.

In this paper, we propose a Transformer model making continuous emotion valence prediction on
text. Based on our literature reviews, the Transformer model is used in various NLP tasks. In this
paper, we also find that attention-based model performs the best in emotion cognition modeling. We
propose a new CCC loss function for models that make continuous ratings over time. Based on our
models, we then compare the performances of our customized loss function which is based on CCC
with the standardized MSE loss function. Though MSE is often used in the research community for
optimizing the loss, we find that the CCC loss function performs better in our Evaluation set and is
close to MSE in the Test set. In the final part of the paper, we compare human’s reading behavior
with the model’s behavior. We find that the model is catching the turn words in the text and shifting
the emotion valence accordingly. We find that turn words are the driver words in emotion cognition
with text.

Most importantly, we propose a model that is reconstructing the storytellers’ emotion in a way that
is the same as human. Trained using the emotion ratings as the target ratings, our model is using
lower-dimensional features, linguistic only features, to make predictions on a higher-dimensional
space, the ratings that are annotated using visual, audio and linguistic inputs. This is matching
human’s cognition process of interpreting the emotion changes of a book or a story, which only
contains the text inputs. Human’s emotion cognition ability is trained or built by millions of short
moments in lives, which contains visual, audio and linguistic inputs. Thus, when readers catch
the emotion of a story, they are reconstructing the whole story in mind as if they were in the story.
By training on a higher-dimensional target, we propose that our model closely match the human’s
emotion cognition process of text.

In conclusion, modeling the emotion cognition process with linguistic inputs remains a difficult yet
important building block of understanding the emotion cognition process of humans. In this paper,
we have outlined ways to construct valid and effective models to make continuous emotion valence
predictions over large text corpus. We hope this paper will inspire more researchers to accomplish
more ambitious and quantitative results in the future.
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som. Reasoning about entailment with neural attention. arXiv preprint arXiv:1509.06664,
2015.

[27] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,
and Quoc V Le. Qanet: Combining local convolution with global self-attention for reading
comprehension. arXiv preprint arXiv:1804.09541, 2018.

[28] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[29] Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, and Richard Socher. Non-
autoregressive neural machine translation. arXiv preprint arXiv:1711.02281, 2017.

[30] Lawrence I-Kuei Lin. A concordance correlation coefficient to evaluate reproducibility. Biomet-
rics, pages 255–268, 1989.

[31] Fabien Ringeval, Björn Schuller, Michel Valstar, Jonathan Gratch, Roddy Cowie, Stefan Scherer,
Sharon Mozgai, Nicholas Cummins, Maximilian Schmitt, and Maja Pantic. AVEC 2017: Real-
life depression, and affect recognition workshop and challenge. In Proceedings of the 7th
Annual Workshop on Audio/Visual Emotion Challenge, pages 3–9, 2017.

[32] Zhi-Xuan Tan, Arushi Goel, Thanh-Son Nguyen, and Desmond C. Ong. A multimodal lstm for
predicting listener empathic responses over time, 2018.

[33] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

10



Appendix A: Visualizations of Model Structures

11



12


	Introduction
	Related Works
	Approach
	Evaluation Method
	Human Baseline
	CNN Features Fusion
	Long Short-Term Memory Networks
	Transformer
	Customized Loss Function


	Experiments
	Dataset
	Model Configuration
	Results And Analysis
	Evaluation And Tuning
	Customized Loss Function And Testing

	Sentiment Analysis
	Conclusion


