
Question Answering Models for SQuAD 2.0

Ryle Zhou

Stanford University
rylezhou@stanford.edu

Abstract

Question answering is an important NLP task. QA systems allow a user to ask
a question in natural language, and receive the answer to their question quickly.
SQuAD 2.0 is a challenging natural language understanding task. Models precon-
ditioned with BERT achieved better than human performance on SQuAD 1.1 and
currently lead on SQuAD 2.0 top performance. In this project, my goal is to find
out what to do to make BERT work for SQuAD 2.0 and see what can be improved. I
combined BERT with BiDAF and made a new model called BERTPlusBiDILSTM.

1 Introduction

SQuAD 2.0 is more challenging than SQuAD 1.0 because except for completing the task of making
the right prediction of the right answer, it requires my model to understand whether an answer is
in certain span. In other words, it requires my model to make a decision of whether a hypothesis
is supported by, contradicted by, or neutral with respect to an assumption. Moreover, my model
must understand when a possible relationship between two entities is not entailed by the text. BERT
contains deep and contextual(benefit of bidirectionally) word embeddings representation for each
word. BERT has became the new trend for NLP tasks, including SQuAD 2.0, since released. I started
my exploration by understanding what it is and how it works. BERT is a method of pre-training
language representations, meaning that we train a general-purpose language model on massive corpus
and then fine tuning this model for SQuAD 2.0. BERT learns useful text representations by being
pre-trained on two different tasks: 1. In a sentence with two words masked, BERT is trained to
predict what those two words are. 2. Given two sentences, BERT is trained to determine whether
one of these sentences comes after the other in a piece of text, or whether they are just two unrelated
sentences. I found it challenging to fine-tune BERT for SQuAD 2.0. I understand that the idea is
to use BERT pretrained values with added different input and output layers that work effectual for
SQuAD. Since BERT has many parameters, it adds complexity for the fine-tuning process. The input
is the question and corresponding paragraph, while the output is the start, end answer span for the
question.(Figure 1 below)

2 Approach

2.1 SQuAD 2.0 Unanswerable Example

Findings:
(1). There are about 33.38%(43,498 added to SQuAD 1.1) of negative examples(new) in SQuAD 2.0
dataset that are spread out in 64.48% of the total articles.
(2). There are about 60.87% articles contain negative examples in test dataset.
(3). There are about 72.92% articles contain negative examples in development.
Refer to Figure 1 below.



Figure 1: BERT for SQuAD 2.0

(a) Two no answer questions with plausible answers in
red. Relevant key words in blue.

(b) Data Comparison between SQuAD 1.1
and SQuAD 2.0

Figure 2: SQuAD 2.0 Analysis

2.2 Baseline

2.2.1 BiDAF

I start with BiDAF model with character embeddings.

Figure 3 shows the architecture of BiDAF model.

Embedding Layer: character level embedding layer plus word embedding - maps each word to a
vector space using character-level CNNs and a pre-trained word embedding model.
Contextual Embedding Layer: utilizes contextual cues from surrounding words to refine the
embedding of the words. These first three layers are applied to both the query and context.
Attention Flow Layer: couples the query and context vectors and produces a set of query aware
feature vectors for each word in the context.
Modeling Layer: employs a Recurrent Neural Network to scan the context.
Output Layer: provides an answer to the query.
Detailed eqauation for BiDAF can be found in the original paper Bidirectional Attention Flow for
Machine Comprehension(Seo et al.,2017)

2.3 Building on top of Baseline

2.3.1 Bert

BERT’s architecture is based on a bidirectional Transformer encoder. BERT Base has 12 encoder
layers and BERT Large has 24 encoder layers. BERT Base has 768 hidden states and BERT Large
has 1024 for feed forward networks. There are 12 attention heads and 16 for BERT Base and BERT
Large respectively. BERT’s input representation is able to represent a single text sentence or a pair of
text sentences. Each token or each word is represented by the summation of its word embedding, a

2



Figure 3: BiDirectional Attention Flow Model

learned positional embedding, and a learned segment embedding. The word embedding used in the
paper is WordPiece embeddings in tokenlization. The positional embedding captures the order of
the word in the sequence. The learned segment embedding associates tokens with a corresponding
sentence if the input can be a pair of text sentences. Once BERT is pretrained, task-specific models
are formed by adding one additional output layer, therefore a minimal number of parameters need to
be learned from scratch which will be beneficial for the time that being spent on learning from zero.

Figure 4: BERT model structure

2.3.2 BertPlusBiDiLSTM

BERT makes use of Transformer, an attention mechanism that learns contextual relations between
words in a text. In its vanilla form, Transformer includes two separate mechanisms - an encoder

3



that reads the text input and a decoder that produces a prediction for the task. Since BERT has a
much stronger attention mechanism, and BiDAF has the advantage of memorizing longer context, I
came up with an idea of replacing the attention flow layer from BiDAF with BERT and run the last
modeling layer and output layer to see if this can improve the performance of my baseline.

Figure 5: BERTPlusBiDiLSTM

3 Experiments

3.1 Data

I evaluate the model on SQuAD 2.0. SQuAD 2.0 combines existing SQuAD 1.1 data(collected from
Wikipedia articles) with 53,775 new, unanswerable questions about the same paragraphs(paragraphs
that are shorter than 500 characters were removed) written adversarially by crowdworkers to look
similar to answerable ones. If questions crowdworkers wrote 25 or fewer questions on the article
assigned, those questions were removed to ensure a high quality of the dataset. SQuAD 2.0 is a
challenging natural language understanding task for existing models: a strong neural system that gets
86% F1 on SQuAD 1.1 achieves only 66% F1 on SQuAD 2.0.

3.2 Evaluation method

Exact match and F1 scores are used for evaluation.
Exact match (EM) assigns a full credit 1.0 if the predicted answer is equal to the gold answer and 0.0
otherwise.
F1 score computes the average word overlap between predicted and correct answers.

F1 =
2× Precision×Recall

Precision+Recall
(1)

3.3 Experimental Details

3.3.1 BiDAF with Character embeddings

Compare with the starter code, character embeddings are added on top of word embeddings. Word
vectors and character vectors are from GloVe pre-trained result. And then character and word
embeddings are concatenated together to pass to a 1D Convolutional Neural Network and a Highway
Encoder(number of layers is 2). This process captures all information from words and characters. The
output of the Highway Encoder are passed into a Bidirectional LSTM layer called RNN Encoder. The
outputs of two directions are concatenated into contextual vectors. Followed by the BiDAFAttention
layer(the layer that is making attention mechanism happening), attention scores are calculated base on
each time step to see the similarity between context and query from the previous two directions. The
attention vecters and contextual embeddings are combined together. Another modeling layer(2 layers
of bidirectional LSTM) are used to integrate temporal information between contextual representations
conditioned on the question. The final output layer is using attention layer outputs and modeling layer
outputs to a bidirectional LSTM. Softmax is used for finally produce the start of the end of context.

4



No answer prediction
In order to avoid <unk> and predict no answer, out-of-vocabulary tokens were prepended to the
beginning of each sentence. The model outputs soft-predictions as usual. If Pstart(0) ·Pend(0) is
greater than any predicted answer span, the model predicts no answer.

3.3.2 Solving BERT’Cuda runtime error(): out of memory’ problem and finding hyper
parameters that can make BERT run

BERT can achieve SOTA performace in theory. However, every time I try to stack more than a few
samples(I tried 32, 16, 10, 6, 2, 1) for batch size I get a CUDA RuntimeError: out of memory error.
This problem needs to be solved before I can do any other experiments.

Solution 1: Accumulating gradients During the loss.backward() operation, gradients are computed
for each parameter and stored in a tensor associated to each parameter: parameter.grad. Changing
accumulation gradient step number will change how many steps to accumulate when we sum
the gradients of the number of backward operations in the parameter.grad tensors before calling
optimizer.step() to perform a step of gradient descent. After I changed the gradient accumulation to
10(a number that’s not too large and not too small in my opinion), batch size being 30,20 still didn’t
work. Only if I make batch size to 10 as well, my model started running. I think in this method ,
batch size is further regulated by accumulating gradients.

Solution 2: Making gradient checkpoint The idea is to back-propagate the gradients in small chunks
along the model, trading the memory needed to store a full back propagation graph with the additional
compute of a partial forward pass associated to each chunk. This turns out to be a slow method
because additional computation for gradient checkpoints is added. I did not choose this solution
given that gradient accumulation already works.

The way of coding also affects how memory is occupied. Since I added RNN to BERT, it increased
memory usage of GPUs. Stuck with out of memory problem caused a majority of my experiment
time. It is an important lessen to learn before my next project. Getting the right VMs and having
using memory wisely in mind while coding should be always taken into considerations for any other
tasks.

3.3.3 Hyper Parameter Fine Tuning for BERT

To fine-tune the BERT model, the first step is to define the right input and output layer. It turns
out that model performance depends heavily on the hyper parameter values selected. When I first
start running BERT, I kept getting "cuda run out of memory error" with even turnig batch size to 1.
Knowing that most of the time stochastic gradient descent algorithms require larger batches than
just a handful of examples to get decent results. In this case, training with large batches when GPU
cannot handle them is the first problem to solve. I found out by adjusting gradients accumulation will
help when training on Nv6 VM. The current running version of BERTPlusBiDiLSTM has gradient
accumulation steps = 10 and train batch size = 10.

I tried to use Azure Machine Learning Service to define a search space for different hyper parameter
options. I found out that the Azure MLS provides hyper parameter configurations to find the ones
result in the best performance. For example, learning rate can be searched from 1e-4 to 1e-6. It can
see if 1e-4 or 1e-5 has better result than 1e-6. And then Azure MLS can also visualize the result.
After I started implement in Azure notebook, I realized this tool is not very easy to use because it
requires almost another complete building up model from ground in iPython and if any mistakes
happen the auto tune will not work. The search also takes a long time for each excution. After
evaluation, I continued my experiment without taking the service.

3.4 Result

3.4.1 Data Comparison

Compared with the starter BiDAF model, Dev NLL: 03.20, F1: 59.59, EM: 56.39, AvNA: 66.46 I
achieved, Dev NLL: 02.93, F1: 63.73, EM: 60.31, AvNA: 69.82. An increase of 4.14% in F1 and
3.92% increase in EM from BiDAF without character embeddings. BiDAF’s performance is 2.27%

5



Figure 6: TensorBoard visulization of results while in training. Blue is the BiDAF without character
embedings model, Grey indicates the starter BiDAF model

from the F1 score mentioned in the SQuAD 2.0 paper. Know What You Don’t Know: Unanswerable
Questions for SQuAD(Rajpurkar et al.,2018)

If it runs correctly, BERT model alone will have F1 score around 79-81% and EM of almost
80. Which would be about 16% increase from BiDAF baseline. Since I haven’t finished training
BERTPlusBiDiLSTM on Nv6 and Nv12, I don’t have the date to demonstrate my result here yet. I
cannot make any conclusion of whether BERTPlusBiDiLSTM is better than the single BERT model.

3.4.2 Takeaways

Model size matters. BERT large, with 345 million parameters, is the largest model of its kind. It is
demonstrably superior on small-scale tasks to BERT base, which uses the same architecture with 110
million parameters.However, we need corresponding computational power to make BERT work. I
need to learn more about how to evaluate different VMs for which task in the future. With enough
training data, more training steps will result with a higher accuracy. For instance, the BERT base
accuracy improves when trained on 1M steps compared to 500k steps with the same batch size
some research paper. BERT’s bidirectional approach converges slower than left-to-right approaches,
because only 15% of words are predicted in each batch, but bidirectional training still outperforms
left-to-right training after a small number of pre-training steps. This is proven by compare BERT
with BiDAF.

4 Future Work

I will continue training until I get a working result from BERTPlusBiLSTM first.

4.0.1 Agile training methods

The choice of pre-trained embeddings for initializing word vectors has a significant impact on the
performance of deep neural models for SQuAD 2.0. Developing from BERT will be my choice to
begin with and continue with for SQuAD and other NLP tasks. But in this project I underestimate the
fact that tuning BERT for specific task can be very time consuming. Because training each hypothesis
or new idea, it takes a long time to train the entire SQuAD 2.0. This causes the turnaround time of
each experiment to be very long(mostly over 12 hours). Expecially, when I added BiLSTM to BERT,
each train took over 20 hours. One thing I learned for sure is that I need to always remember to print
out loss values while training. Because for the first few experiments I ran, I got empty predictions
although my model ran and showed progress. Building faster model to train on large dataset and
reduce turnaround time should be taken into account every time. The more agile methods will more
efficient.

6



4.0.2 Transformer XL

I haven’t had a change to add transformer XL to BERT yet. Replacing BiLSTM with transformer XL
hopefully can reduce the training time and have a positive result in improving accuracy. If it does not
have a positive impact, other algorithms need to studied further more.

4.0.3 Visualization and Readability

During my experiments, I found it very hard to grasp whether my model is doing well and where to
improve because I couldn’t see where the model is marking the predicted answers compare with the
correct answers or which related words to casue the selection of the predicted answers. The future
work to do here is to find out a way to show these process.

4.0.4 No answer prediction

The main difficulty for SQuAD 2.0 is the no answer prediction. Since human language can be very
complex and confusing for deep learning models to understand, except for letting the models see
no answer cases(I think just giving no answer label is not sufficient for models to avoid making
mistakes), it might be helpful to train model with the reasons that the answer for some questions is no
answer.

7


	Introduction
	Approach
	SQuAD 2.0 Unanswerable Example
	Baseline
	BiDAF

	Building on top of Baseline
	Bert
	BertPlusBiDiLSTM


	Experiments
	Data
	Evaluation method
	Experimental Details
	BiDAF with Character embeddings
	Solving BERT'Cuda runtime error(): out of memory' problem and finding hyper parameters that can make BERT run
	Hyper Parameter Fine Tuning for BERT

	Result
	Data Comparison
	Takeaways


	Future Work
	Agile training methods
	Transformer XL
	Visualization and Readability
	No answer prediction



