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Abstract

Machine reading comprehension and question answering is an essential task in
natural language processing. Recently, Pre-trained Contextual Embeddings (PCE)
models like Embeddings from Language Models (ELMo) [1] and Bidirectional
Encoder Representations from Transformers (BERT) [2] have attracted lots of atten-
tion due to their great performance in a wide range of NLP tasks. In this project, we
picked up BERT model and tried to fine-tune it with additional task-specific layers
to improve its performance on Stanford Question Answering Dataset (SQuAD 2.0).
We designed several output architectures and compared their performance to BERT
baseline model in great details. So far, our best-proposed single model built an
LSTM Encoder, an LSTM decoder and a highway network on top of the BERT
base uncased model and achieved an F1 score of 77.96 on the dev set. By applying
ensemble technique with selected models, our final version model currently ranks
12th on the Stanford CS224N SQuAD 2.0 test leaderboard with an F1 score 77.827
(name: Pisces_BERT).

1 Introduction

In this paper, we focus on reading comprehension question answering which aims to answer questions
given passage or document. This QA task is always challenging since it requires a comprehensive
understanding of natural languages and the ability to do further inference and reasoning. For our
project, we mainly focus on Stanford Question Answering Dataset (SQuAD 2.0) which approximate
the real reading comprehension circumstances. Models that have great performance on SQuAD can
be regarded as a solid benchmark to solve RC and QA problems. Although rapid progress on this
dataset has already been made by many teams, most researchers are still trying to work out a better
model that (1) can adapt to no-answer questions very well and (2) can outperform human oracle (F1:
89.452). Our work mainly develops a model on top of the google-released BERT model. By replacing
the linear BERT output layer with an encoder-decoder architecture, we successfully implemented the
task-specific layers that can deal with the SQuAD 2.0 problems quite well. Currently, our best single
model has achieved a F1 score of 77.96 on the dev set, while the ensemble version achieved 79.44
tested by us on the dev set. The leaderborad result is 77.827 on the test set.

2 Related work

Language model pre-training has shown to be effective for improving many natural language pro-
cessing tasks. Among different models, the most recent google-released Bidirectional Encoder
Representations from Transformers (BERT) [2] is a conceptually simple but empirically powerful
one. It performs very well in a wide range of tasks, including our task, the SQUAD 2.0 competition.
According to the paper [2], the pre-trained BERT representations can be fine-tuned with additional
architectures to succeed in specific tasks. Therefore, here we are going to build our own output
network on top of BERT pre-trained model.
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In our project, we simply adapted BERT model with a linear output layer (described in paper[2])
as our baseline model. We designed several modules on top of it as the task-specific output layers.
Generally, we aim at building a subsequent encoder-decoder architecture as post-processing to
improve BERT model’s performance on the SQUAD 2.0 challenge. For our main encoder-decoder
architecture, we adapted RNN-based bi-directional long short-term memory layer (LSTM) [3] and
gated recurrent units (GRU) [4] as the encoder and decoder, which are commonly used in sequence
to sequence [5] translation task. We also tried a CNN-based encoder block, which is implemented
in QANet [6] and CharCNN[7] networks. For multi-layer state transitions in our recurrent neural
networks, we used highway network [8] to adaptively copy or transform representations. And for the
final output layer, we compared the original linear layer and the QA output layer from Bi-Directional
Attention Flow paper [9]. The details are explained in the approach section below.

3 Approach

In our project, we picked up the BERT model released by Google research in 2018 as our starting
point [10, 11]. We first trained the BERT-Base-Uncased model with one additional linear output layer
(default implementation in BERT paper [2]) as the baseline and evaluated their performance on the
SQuAD 2.0 dataset. Then, we designed our new task-specific output architectures and fine-tuned
the pre-trained BERT base model. We adapted our output layers based on insights gained from
other networks and came up with several operations ourselves. By evaluating those models on the
dev set, we were aiming to improve the performance of our designed models for better accuracy on
SQuAD 2.0 dataset. We also tried to ensemble our model with BERT-Large-Cased models for better
performance to succeed on Leaderboard.

3.1 Pre-trained BERT Baseline Model

BERT is a bidirectional encoder representations from transformers [2]. By training deep transformers
on a carefully designed bidirectional language modeling task, the pre-trained BERT representations
can be fine-tuned later with one additional output layer to perform well in a wide range of tasks without
substantial task-specific architecture. The BERT model architecture is a multi-layer bidirectional
transformer encoder, and it is discussed in great details in paper [12]. During the training process,
for a given token, first, we convert it to the input embeddings, a sum of the token embeddings, the
segmentation embeddings, and the position embeddings. Then we pre-trained the BERT model on
bidirectional masked LM task and next sentence prediction task. With our pre-trained BERT model,
we can easily adapt it to span prediction tasks, i.e. question answering on the SQuAD 2.0. To achieve
this, we first represent the input question and paragraph as a single packed sequence (question with A
segmentation embeddings and paragraph with B segmentation embeddings). And then we introduce
two new parameters for the fine tuning: a start vector S ∈ RH and end vector E ∈ RH . Let’s
denote the final hidden vector from BERT for the ith input token is Ti ∈ RH . We can calculate the
probability of word i being the start of the answer span as a dot product between Ti and S followed
by a softmax over all of the words in the paragraph. And the training objective is the log-likelihood
of the correct start and end position. If the question has no answer, we will simply predict both the
start and end positions as 0.

Pi =
eS·Ti∑
j e

S·Tj

3.2 Modules on Top of BERT

In this section, we discuss modules we implemented as the output architecture. We gained these
insights from existing networks and implemented them in our own way on top of the pre-trained
BERT-base model.

3.2.1 Encoder and Decoder Blocks

We explored several encoders and decoders discussed in other NLP works and here is a summary:

Bidirectional Long Short-Term Memory (LSTM) Layer Encoder/Decoder: Long Short-Term
Memory [3] (LSTM) is an RNN architecture aimed to solve vanishing gradients problem. On each
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time step t, we have a hidden state h(t) and a cell state c(t). The cell can store long-term information,
and the LSTM can erase, write and read information from the cell controlled by three gates (forget
gate f (t), input gate i(t) and output gate o(t)). On each time step, we can update our hidden state and
cell state as following:

c̃(t) = tanh(Wch
t−1 +Ucx

t + bc)

c(t) = f (t) ◦ c(t−1) + i(t) ◦ c̃(t)

h(t) = o(t) ◦ tanhc(t)

By adding an RNN LSTM encode/decoder on top of the BERT model, we can integrate temporal
dependencies between time-steps of the output tokenized sequence better.

Gated Recurrent Units (GRU) Encoder/Decoder: Gated Recurrent Units [4] is a simpler alter-
native to the LSTM. And on each time step t, we have input x(t) and hidden state h(t) (no cell state),
and we used two gates (update gate u(t) and reset gate r(t)) to control the states.

Convolutional Neural Network (CNN) Encoder: Current end-to-end machine reading and ques-
tion answering (Q&A) models are primarily based on RNN encoders and decoders. However, there
are innovative architectures that use CNN in this task for effectiveness and efficiency. Inspired
by QANet [6] and CharCNN [7], we tried a CNN-based encoder which consists of convolution
operations after RNN units, where convolution models local interactions and RNN models global
interactions.

The first layer, as usual, is a typical Bidirectional LSTM. After that, for the CNN part, we use 2D
convolution on the embedded sequence. Given a tensor with size as (batch_size× seq_length×
hidden_state), we first unsqueeze it to (batch_size× 1× seq_length× hidden_state) and then
do 2D convolution on the last two dimension with output size as (batch_size × hidden_state ×
seq_length× 1). Finally, we squeeze the last dimension and swap the last two dimension to get the
same dimension as input. This convolution extracts the relationship of nearby word embeddings in a
sequence without change the dimension of input tensor.

3.2.2 Self-attention Layer

For some NLP tasks, people propose to use attention mechanism on top of the CNN or LSTM model
to introduce an extra source of information to guide the extraction of sentence embedding. Here
we also implemented a self-attention layer discussed in paper [12], and it allows each position of
the output token to attend to all positions up to and including that position. In our implementation,
we used the simplest basic dot-product attention. This can help for better interpreting the inference
between different positions in the output sequence.

3.2.3 Highway Network

Highway network is a novel architecture that enables the optimization of networks with virtually
arbitrary depth [8]. By applying a gating mechanism, a neural network can have paths along which
information can flow across several layers without attenuation. Given an input x ∈ RH , a one-layer
highway network computes:

xgate = σ(Wgatex+ bgate) ∈ RH

xproj = ReLU(Wprojx+ bproj) ∈ RH

xhighway = xgate � xproj + (1− xgate)

Wproj, Wgate, bgate and bproj are learnable parameters. We choose a highway network to train
multi-layer state transitions in our recurrent neural networks. Instead of traditional neural layers, it
can allow the network to adaptively copy or transform representations. So it can help to refine the
tokenized sequence.

3.2.4 Output Layer

For the output layer, we tried the original BERT linear output layer and the QA output layer from
Bi-Directional Attention Flow (BiDAF-Out).
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BERT Output Layer: A simple linear output layer that converts the dimension of the output
sequence from (batch_size, seq_len, hiddenstate) to (batch_size, seq_len, 2). And we split it to
get the start and end logits. Finally, we compute the cross-entropy loss with the start and end position
vectors

QA output layer from Bi-Directional Attention Flow (BiDAF-Out): To replace the linear output
layer in default BERT model, we add a QA output layer adapted from BiDAF model [9]. First we
apply a LSTM to the BERT tokenized output sequence o1, o2, ..., oN ∈ RH and get a model output
sequence (m1,m2, ...,mN ∈ R2H ). Then we apply a bidirectional LSTM to the model output
sequence, producing a vector m

′

i for each mi:

m
′

i,fwd = LSTM(m
′

i−1,mi) ∈ RH , m
′

i,rev = LSTM(m
′

i+1,mi) ∈ RH

m
′

i = [m
′

i,fwd;m
′

i,rev] ∈ R2H

Now, let O ∈ RH×N be the matrix with columns o1, o2, ..., oN ∈ RH . And let M,M
′ ∈ R2H×N be

matrices with columns m1,m2, ...,mN and m
′

1,m
′

2, ...,m
′

N . Then we calculate the start logits and
end logits as following:

Slogits = Wstart[O;M ],Elogits = Wend[O;M
′
]

Finally we compute the cross entropy loss with the start and end position vectors.

3.3 Proposed Models

Our main idea is to add an encoder-decoder architecture on top of the PyTorch implementation of
BERT baseline [10]. This idea may come from the computer vision area. For multi-view synthesis
task [13], we always use a general auto-encoder to generate the sketch of other views and an additional
auto-encoder for texture level reconstruction.

Here, we propose a branch of models based on combinations of different modules. The architecture
of our models can be found in Figure 1.

We divide our models mainly by different encoder-decoder structures. The first branch of models are
based on BiLSTM Encoder and BiLSTM Decoder. They contain a Bidirectional LSTM (BiLSTM)
encoder/decoder with 3 LSTM units. All recurrent units are associated with dropout with probability
0.2. Each LSTM unit takes BERT output as input and generates hidden states recurrently. For the
second branch of models, we have GRU Encoder and GRU Decoder, which both contain a GRU
unit. We also introduce an CNN encoder, which contains a BiLSTM layer and a 2D convolution
layer described in Section 3.2.1. The BiLSTM layer also contains 3 bidirectional LSTM units.

Then, we may pass the output of encoders or decoders into a Highway network described in section
3.2.3. Besides that, we also use the Self-attention modules described in Section 3.2.2 to see if it
improves the performance of encoder-decoder structure.

For the output layer, we have two types. The first type is standard BERT-SQUAD-Out, which is just
a linear layer that obtains start and end logits from the sequence representation. The second type is
the BiDAF-Out, which is described in Section 3.2.4.

We tried different combinations among these modules to get better performance than BERT baseline
model. The details of representative models are presented below.

a. BiLSTM Encoder + BiDAF-Out
This model uses the output layer of BiDAF instead of BERT output layer. We add a BiLSTM
encoder before it to improve the performance.

b. BiLSTM Encoder + Highway + BERT-SQUAD-Out
In this model, we modify the encoder-decoder structure by removing the BiLSTM decoder and
alternate it with a highway network.

c. BiLSTM Encoder + Highway + BiLSTM Decoder + BERT-SQUAD-Out
This is another typical encoder-decoder architecture where Highway network is used as a bridge
for encoder and decoder.
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Figure 1: Schema of model architecture

d. BiLSTM Encoder + BiLSTM Decoder + Highway + BERT-SQUAD-Out (our best model
so far)
In this model, instead of using Highway network as a bridge between the encoder and decoder,
we use it as a post-processing layer to improve the feature representation of BERT’s output layer
for SQUAD.

e. GRU Encoder + Self-attention + GRU Decoder + BERT-SQUAD-Out
A GRU encoder with 1 GRU unit, after that, we pass it through a self-attention layer described in
Section 3.2.2. Finally, we have a GRU decoder with 1 GRU unit. This is a typical architecture
used in seq2seq model [5].

f. GRU Encoder + GRU Decoder + BERT-SQUAD-Out
Simple GRU encoder-decoder. Both encoder and decoder contain 1 GRU units. We use this
compared with the previous model to evaluate the performance of attention layer in the post-
processing encoder-decoder network.

g. CNN Encoder +BERT-SQUAD-Out
In this model, we use a CNN encoder, which contains a BiLSTM module as the first layer. The
BiLSTM module has 3 LSTM units. Then we use the 2D convolution layer presented in Section
3.2.1 to extract the relationship between different embeddings in the sequence.

h. CNN Encoder +Self-attention +BERT-SQUAD-Out
As typical GRU encoder-decoder with attention performs not so good, we combine the CNN
encoder described above with self-attention layer to form an architecture on top of BERT. This is
a typical structure used in QANet[6].

i. CNN Encoder + BiLSTM Decoder + Highway + BERT-SQUAD-Out
In this model, we add a BiLSTM Decoder after the CNN encoder described above. Then, we use
a Highway network before the finally BERT output layer as post-processing.

During the experiments, we compare the performance of those models on the Dev set. Then, we try
to ensemble each two or more models for the final performance on the leaderboard.

All models are trained with pre-trained weights from BERT base model. The code for the pre-
trained BERT model is borrowed from Github [11], and all top implementations are realized
by us.

3.4 Ensemble

We finally picked up several best models for ensemble. The detailed approach can be discussed as
voting on the questions that have no answer. Given a branch of models, for each question, if one
model says it has no answer, we will make a prediction as "no answer". For the questions that have
answers, we set a master model. The answer of the master model on these questions will be the final
prediction. The intuition behind this is that, based on our analysis in section 4.5.2, bad models we
tried are bad because they always have poor performance on questions that have no answer.
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4 Experiments

4.1 Data

We used Stanford Question Answering Dataset (SQuAD 2.0) [14] to train and evaluate our models.
Samples in this dataset include (question, answer, context paragraph) tuples. The paragraphs are from
Wikipedia. The questions and answers were crowdsourced using Amazon Mechanical Turk. And we
have around 150k questions in total, and roughly half of the questions are not answerable (this is new
in SQuAD 2.0). However, if a question is answerable, the answer is guaranteed to be a continuous
span in the context paragraph.

4.2 Evaluation method

We apply two metrics to measure the performance of our model: Exact Match (EM) score and F1
score.
Exact Match is a binary measure (true/false) of whether the system output exactly matches the
ground truth answer exactly. This is a fairly strict metric.
F1 is a less strict metric, and it is the harmonic mean of precision and recall. F1 = 2×precision×recall

precision+recall .
The system would have 100% precision if its answer is a subset of the ground truth answer and 50%
recall if it only includes one out of the two words in the ground truth output.
When a question has no answer, both the F1 and EM score are 1 if the model predicts no-answer, and
0 otherwise.

4.3 Experimental details

We set up several experiments with the default BERT-base model’s configurations [11]. And we
kept the training hyperparameters the same for all our proposed models: train_batch_size=24,
learning_rate=3 × 10−5, num_train_epochs=2.0, max_seq_length=384, doc_stride=128. We ran
every experiment on server with 2 GPUs. It usually took 8-12 hours for a model to train.

4.4 Results

We evaluated our proposed models on the dev set, and the results are summarized in Table 1. In total,
we have 7 models that exceed the baseline BERT-base model with one default output layer (PyTorch
and Tensorflow implementation) in F1 or EM. Among all these models, model BiLSTM Encoder
+ BiLSTM Decoder + Highway + BERT-SQUAD-Out has the best F1 score 77.96 and EM score
74.98 on the Dev Set.

For ensemble models, we tried to ensemble every two models by voting on the questions with no
answer. Then, we select one of the models as master who give predictions on questions that has
answers. From the result we can see that model 11 and 7 have the best ensemble performance. We
also tried to ensemble model 11 and 7 with BERT large case model and got a 79.443 F1 score and a
76.996 EM score on the Dev Set. Compared to the pure BERT large cased model’s performance (F1
79.393, EM 76.917), the ensemble model improves a bit. We used our evaluation file to get scores for
fair comparison. Our final model’s performance on the Test Set also got a good result, with a 77.827
F1 score and a 74.472 EM score on the leaderboard.

5 Analysis

5.1 Model Performance Analysis

From the results, we can see that encoder-decoder architectures added on top of BERT is generally
effective. It conducts post-processing on BERT output representations to improve their quality. After
comparing different models, we find that:

Recurrent units such as BiLSTM and GRUs may help improve performance on top of BERT. All
proposed models that outperform BERT baseline contain at least one recurrent encoder or decoder.
It verifies our proposed idea that RNN encoder-decoder architecture can help to integrate temporal
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ID Architecture on Top of BERT F1 EM
1 BERT-base PyTorch Implementation 76.70 73.85
2 BERT-base Tensorflow Implementation 76.07 72.80
3 GRU Encoder + Self-attention + GRU Decoder + BERT-SQUAD-Out 73.59 69.87
4 BiLSTM Encoder + BiDAF-Out 76.37 73.05
5 CNN Encoder +Self-attention +BERT-SQUAD-Out 76.49 73.23
6 CNN Encoder + BERT-SQUAD-Out 76.56 73.64
7 GRU Encoder + GRU Decoder + BERT-SQUAD-Out 76.85 73.77
8 CNN Encoder + BiLSTM Decoder + Highway + BERT-SQUAD-Out 77.07 73.87
9 BiLSTM Encoder + Highway + BERT-SQUAD-Out 77.41 74.32
10 BiLSTM Encoder + Highway + BiLSTM Decoder + BERT-SQUAD-Out 77.66 74.87
11 BiLSTM Encoder + BiLSTM Decoder + Highway + BERT-SQUAD-Out 77.96 74.98
12 Ensemble of 11 and 7 78.35 75.60
13 Ensemble of 11 and 7 and BERT large case model 79.443 76.966

Table 1: F1 and EM scores for different model architectures (All our implementations are done in
PyTorch).

ID HasAnsF1 NoAnsF1 hasAnsEM NoAnsEM
1 79.29 74.33 73.33 74.34
2 80.75 71.78 73.92 71.78
3 82.47 65.43 74.71 65.44
4 81.26 71.875 74.33 71.88
5 80.48 72.82 73.68 72.82
6 79.70 73.67 73.61 73.67
7 80.80 73.30 74.26 73.30
8 81.56 72.95 74.85 72.95
9 80.73 74.37 74.26 74.37

10 74.68 80.40 68.87 80.40
11 78.72 77.27 72.47 77.27

Table 2: Has-Answer and No-Answer F1 and EM scores for different model architectures.

dependencies between time-steps of the output tokenized sequence better, thus refine the output
sequence for following operations.

Self-attention may not help improve SQUAD performance when it is added on top of BERT. We can
see that model 3 cannot behave as well as model 6 when self-attention is added between the GRU
encoder and GRU decoder. It makes sense because the architecture of the BERT model alone is built
on lots of masked attention layers and pre-trained with specific tasks. Adding attention on top of it as
a task-specific layer may not improve its performance further.

CNN encoder can improve the performance on SQUAD when added on top of BERT with other
structures. However, the benefits of CNN encoder is limited. When we replace the BiLSTM encoder
with a CNN encoder in our best model, we have an F1 score dropped from 77.96 to 77.07. However,
from model 5 we can see that, by adding a self-attention layer on top of the CNN encoder, we can
improve the performance of our model. As we know that, CNN always models the local interactions
and the following RNN or self-attention layer can model the global interactions. Although the
performance of CNN encoder is not as good as an RNN one, it’s always faster than RNN for getting
rid of its iterative nature. So it is promising to combine the CNN encoder with a simple data
augmentation technique to enrich the training data to improve the model’s performance further.

BiDAF output layer cannot outperform the BERT output layer. We see that even adding an additional
encoder, the output layer of BiDAF still cannot beat the baseline (Model 4). This may because, for
BiDAF model, we actually pass the query-to-context and context-to-query attention to the output
layer (modeling layer + an additional output layer). But in our BERT model, although the tokenized
sequence we pass to the output includes both the query and the context information, we do not
necessarily interfere with their relations further before passing to the output. We suppose that by
adding an attention layer in between may help to improve this model’s performance.
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Highway network is generally effective when adding between the encoder and decoder or after
encoder-decoder network. We can see that our best single model uses the highway network as
post-processing. The second and third best model also use the highway, but they put the highway in
the middle of encoder and decoder. So highway is always promising to serve as a multi-layer state
transition.

Generally, adding encoder and decoder network with recurrent units on top of BERT with highway
networks can have better performance than BERT baseline. We think the reason may be that the
additional encoder-decoder serve as a post-processing step in fine-tuning. The encoder-decoder
network further polishes the language representation for SQUAD task as the pre-trained BERT model
is more general.

5.2 Has-Answer and No-Answer Analysis

In this section, we analyze the F1 and EM score on both questions that have answers and questions
that have no answer. As shown in Table 2, for each model, we present their Has Answer F1, EM, and
No Answer F1, EM. We find that:

Models that cannot beat BERT baselines have poor performance on questions that have no answer.
For model 3, we can see that when self-attention is added between the GRU encoder and decoder,
the F1 for questions that have no answer drops a lot. BiDAF output layer also has the same effect.
When CNN encoder is added before the self-attention layer, the poor performance on no answer
questions is improved a bit. To sum up, for the models that cannot beat the baselines, they increase the
performance on questions with answers while sacrificing no answer question’s performance. In fact,
self-attention has been demonstrated to be effective in SQuAD 1.1[6, 12, 9]. This experiment may
suggest that the promising structure for SQuAD 1.1 may not have good performance on questions
with no answer.

Some outperforming models have a more balanced score in questions with or without answers. We
can see that starting from model 7, some models that have higher total F1 or EM have more balanced
F1 or EM on both questions with or without answers. For our best model, which is model 11, we can
see a very balanced F1. However, model 8 with CNN encoder is still less balanced. Model 10 also
shows a very imbalanced and almost inverted F1 in questions with/without answers.

We present the examples of predictions from the baseline (model 1), the best single model (model 11)
and the worse model (model 3). All examples come from dev set. For each example in Table 3, there
is no answer. However, model 3 always predict the wrong answer. Based on these analyses, instead
of predicting both the start and end positions to be 0 for no-answer questions, we’d better figure out a
more effective way to deal with no-answer questions. Besides, we need to take a deeper look into the
trade-off between the accuracy for has-answer and no-answer accuracy.

Questions model 1 model 3 model 11
Who made fun of the Latin language? NA Geoffrey Chaucer NA

Who led Issacs troops to Cyprus? NA Guy de Lusignan NA
Who began a program of church reform in the 1100s? NA the dukes NA

Table 3: Examples

6 Conclusion

In this paper, we designed several task-specific architectures on top of the BERT model according
to insights gained from other networks. By comparing their performance to BERT baseline model
and doing a deep analysis, we finally implemented our best model with an RNN encoder-decoder
structure followed by a highway network as the output layers. With ensemble techniques, our
model achieves an F1 score of 79.44 on the Dev Set and 77.827 on the Test Set. We can further
improve the performance of our model by fine-tuning the parameters in each layer. Also based on
the error analysis, we can see that there is still a gap in has-answer and no-answer accuracy which
we tried to compensate with ensemble on no-answer predictions. The underlying mechanism should
be understood better to help balance the model’s performance on both has-answer and no-answer
predictions.
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