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CHAPTER

16 Automatic Speech Recognition
and Text-to-Speech

I KNOW not whether
I see your meaning: if I do, it lies
Upon the wordy wavelets of your voice,
Dim as an evening shadow in a brook,

Thomas Lovell Beddoes, 1851

Understanding spoken language, or at least transcribing the words into writing, is
one of the earliest goals of computer language processing. In fact, speech processing
predates the computer by many decades!
The first machine that recognized speech
was a toy from the 1920s. “Radio Rex”,
shown to the right, was a celluloid dog
that moved (by means of a spring) when
the spring was released by 500 Hz acous-
tic energy. Since 500 Hz is roughly the
first formant of the vowel [eh] in “Rex”,
Rex seemed to come when he was called
(David, Jr. and Selfridge, 1962).

In modern times, we expect more of our automatic systems. The task of auto-
matic speech recognition (ASR) is to map any waveform like this:ASR

to the appropriate string of words:

It’s time for lunch!

Automatic transcription of speech by any speaker in any environment is still far from
solved, but ASR technology has matured to the point where it is now viable for many
practical tasks. Speech is a natural interface for communicating with smart home ap-
pliances, personal assistants, or cellphones, where keyboards are less convenient, in
telephony applications like call-routing (“Accounting, please”) or in sophisticated
dialogue applications (“I’d like to change the return date of my flight”). ASR is also
useful for general transcription, for example for automatically generating captions
for audio or video text (transcribing movies or videos or live discussions). Transcrip-
tion is important in fields like law where dictation plays an important role. Finally,
ASR is important as part of augmentative communication (interaction between com-
puters and humans with some disability resulting in difficulties or inabilities in typ-
ing or audition). The blind Milton famously dictated Paradise Lost to his daughters,
and Henry James dictated his later novels after a repetitive stress injury.

What about the opposite problem, going from text to speech? This is a problem
with an even longer history. In Vienna in 1769, Wolfgang von Kempelen built for
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the Empress Maria Theresa the famous Mechanical Turk, a chess-playing automaton
consisting of a wooden box filled with gears, behind which sat a robot mannequin
who played chess by moving pieces with his mechanical arm. The Turk toured Eu-
rope and the Americas for decades, defeating Napoleon Bonaparte and even playing
Charles Babbage. The Mechanical Turk might have been one of the early successes
of artificial intelligence were it not for the fact that it was, alas, a hoax, powered by
a human chess player hidden inside the box.

What is less well known is that von Kempelen, an extraordinarily
prolific inventor, also built between
1769 and 1790 what was definitely
not a hoax: the first full-sentence
speech synthesizer, shown partially to
the right. His device consisted of a
bellows to simulate the lungs, a rub-
ber mouthpiece and a nose aperture, a
reed to simulate the vocal folds, var-
ious whistles for the fricatives, and a
small auxiliary bellows to provide the puff of air for plosives. By moving levers
with both hands to open and close apertures, and adjusting the flexible leather “vo-
cal tract”, an operator could produce different consonants and vowels.

More than two centuries later, we no longer build our synthesizers out of wood
and leather, nor do we need human operators. The modern task of speech synthesis,speech

synthesis
also called text-to-speech or TTS, is exactly the reverse of ASR; to map text:text-to-speech

TTS
It’s time for lunch!

to an acoustic waveform:

Modern speech synthesis has a wide variety of applications. TTS is used in
conversational agents that conduct dialogues with people, plays a role in devices
that read out loud for the blind or in games, and can be used to speak for sufferers
of neurological disorders, such as the late astrophysicist Steven Hawking who, after
he lost the use of his voice because of ALS, spoke by manipulating a TTS system.

In the next sections we’ll show how to do ASR with encoder-decoders, intro-
duce the CTC loss functions, the standard word error rate evaluation metric, and
describe how acoustic features are extracted. We’ll then see how TTS can be mod-
eled with almost the same algorithm in reverse, and conclude with a brief mention
of other speech tasks.

16.1 The Automatic Speech Recognition Task

Before describing algorithms for ASR, let’s talk about how the task itself varies.
One dimension of variation is vocabulary size. Some ASR tasks can be solved with
extremely high accuracy, like those with a 2-word vocabulary (yes versus no) or
an 11 word vocabulary like digit recognition (recognizing sequences of digits in-digit

recognition
cluding zero to nine plus oh). Open-ended tasks like transcribing videos or human
conversations, with large vocabularies of up to 60,000 words, are much harder.
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A second dimension of variation is who the speaker is talking to. Humans speak-
ing to machines (either dictating or talking to a dialogue system) are easier to recog-
nize than humans speaking to humans. Read speech, in which humans are readingread speech

out loud, for example in audio books, is also relatively easy to recognize. Recog-
nizing the speech of two humans talking to each other in conversational speech,conversational

speech
for example, for transcribing a business meeting, is the hardest. It seems that when
humans talk to machines, or read without an audience present, they simplify their
speech quite a bit, talking more slowly and more clearly.

A third dimension of variation is channel and noise. Speech is easier to recognize
if it’s recorded in a quiet room with head-mounted microphones than if it’s recorded
by a distant microphone on a noisy city street, or in a car with the window open.

A final dimension of variation is accent or speaker-class characteristics. Speech
is easier to recognize if the speaker is speaking the same dialect or variety that the
system was trained on. Speech by speakers of regional or ethnic dialects, or speech
by children can be quite difficult to recognize if the system is only trained on speak-
ers of standard dialects, or only adult speakers.

A number of publicly available corpora with human-created transcripts are used
to create ASR test and training sets to explore this variation; we mention a few of
them here since you will encounter them in the literature. LibriSpeech is a largeLibriSpeech

open-source read-speech 16 kHz dataset with over 1000 hours of audio books from
the LibriVox project, with transcripts aligned at the sentence level (Panayotov et al.,
2015). It is divided into an easier (“clean”) and a more difficult portion (“other”)
with the clean portion of higher recording quality and with accents closer to US
English. This was done by running a speech recognizer (trained on read speech from
the Wall Street Journal) on all the audio, computing the WER for each speaker based
on the gold transcripts, and dividing the speakers roughly in half, with recordings
from lower-WER speakers called “clean” and recordings from higher-WER speakers
“other”.

The Switchboard corpus of prompted telephone conversations between strangersSwitchboard

was collected in the early 1990s; it contains 2430 conversations averaging 6 min-
utes each, totaling 240 hours of 8 kHz speech and about 3 million words (Godfrey
et al., 1992). Switchboard has the singular advantage of an enormous amount of
auxiliary hand-done linguistic labeling, including parses, dialogue act tags, phonetic
and prosodic labeling, and discourse and information structure. The CALLHOMECALLHOME

corpus was collected in the late 1990s and consists of 120 unscripted 30-minute
telephone conversations between native speakers of English who were usually close
friends or family (Canavan et al., 1997).

The Santa Barbara Corpus of Spoken American English (Du Bois et al., 2005) is
a large corpus of naturally occurring everyday spoken interactions from all over the
United States, mostly face-to-face conversation, but also town-hall meetings, food
preparation, on-the-job talk, and classroom lectures. The corpus was anonymized by
removing personal names and other identifying information (replaced by pseudonyms
in the transcripts, and masked in the audio).

CORAAL is a collection of over 150 sociolinguistic interviews with AfricanCORAAL

American speakers, with the goal of studying African American Language (AAL),
the many variations of language used in African American communities (Kendall
and Farrington, 2020). The interviews are anonymized with transcripts aligned at
the utterance level. The CHiME Challenge is a series of difficult shared tasks withCHiME

corpora that deal with robustness in ASR. The CHiME 5 task, for example, is ASR of
conversational speech in real home environments (specifically dinner parties). The
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corpus contains recordings of twenty different dinner parties in real homes, each
with four participants, and in three locations (kitchen, dining area, living room),
recorded both with distant room microphones and with body-worn mikes. The
HKUST Mandarin Telephone Speech corpus has 1206 ten-minute telephone con-HKUST

versations between speakers of Mandarin across China, including transcripts of the
conversations, which are between either friends or strangers (Liu et al., 2006). The
AISHELL-1 corpus contains 170 hours of Mandarin read speech of sentences takenAISHELL-1

from various domains, read by different speakers mainly from northern China (Bu
et al., 2017).

Figure 16.1 shows the rough percentage of incorrect words (the word error rate,
or WER, defined on page 16) from state-of-the-art systems on some of these tasks.
Note that the error rate on read speech (like the LibriSpeech audiobook corpus) is
around 2%; this is a solved task, although these numbers come from systems that re-
quire enormous computational resources. By contrast, the error rate for transcribing
conversations between humans is much higher; 5.8 to 11% for the Switchboard and
CALLHOME corpora. The error rate is higher yet again for speakers of varieties
like African American Vernacular English, and yet again for difficult conversational
tasks like transcription of 4-speaker dinner party speech, which can have error rates
as high as 81.3%. Character error rates (CER) are also much lower for read Man-
darin speech than for natural conversation.

English Tasks WER%
LibriSpeech audiobooks 960hour clean 1.4
LibriSpeech audiobooks 960hour other 2.6
Switchboard telephone conversations between strangers 5.8
CALLHOME telephone conversations between family 11.0
Sociolinguistic interviews, CORAAL (AAL) 27.0
CHiMe5 dinner parties with body-worn microphones 47.9
CHiMe5 dinner parties with distant microphones 81.3
Chinese (Mandarin) Tasks CER%
AISHELL-1 Mandarin read speech corpus 6.7
HKUST Mandarin Chinese telephone conversations 23.5

Figure 16.1 Rough Word Error Rates (WER = % of words misrecognized) reported around
2020 for ASR on various American English recognition tasks, and character error rates (CER)
for two Chinese recognition tasks.

16.2 Feature Extraction for ASR: Log Mel Spectrum

The first step in ASR is to transform the input waveform into a sequence of acoustic
feature vectors, each vector representing the information in a small time windowfeature vector

of the signal. Let’s see how to convert a raw wavefile to the most commonly used
features, sequences of log mel spectrum vectors. A speech signal processing course
is recommended for more details.

16.2.1 Sampling and Quantization
The input to a speech recognizer is a complex series of changes in air pressure.
These changes in air pressure obviously originate with the speaker and are caused
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by the specific way that air passes through the glottis and out the oral or nasal cav-
ities. We represent sound waves by plotting the change in air pressure over time.
One metaphor which sometimes helps in understanding these graphs is that of a ver-
tical plate blocking the air pressure waves (perhaps in a microphone in front of a
speaker’s mouth, or the eardrum in a hearer’s ear). The graph measures the amount
of compression or rarefaction (uncompression) of the air molecules at this plate.
Figure 16.2 shows a short segment of a waveform taken from the Switchboard corpus
of telephone speech of the vowel [iy] from someone saying “she just had a baby”.

Time (s)
0 0.03875

–0.01697

0.02283

0

Figure 16.2 A waveform of an instance of the vowel [iy] (the last vowel in the word “baby”). The y-axis
shows the level of air pressure above and below normal atmospheric pressure. The x-axis shows time. Notice
that the wave repeats regularly.

The first step in digitizing a sound wave like Fig. 16.2 is to convert the analog
representations (first air pressure and then analog electric signals in a microphone)
into a digital signal. This analog-to-digital conversion has two steps: sampling andsampling

quantization. To sample a signal, we measure its amplitude at a particular time; the
sampling rate is the number of samples taken per second. To accurately measure a
wave, we must have at least two samples in each cycle: one measuring the positive
part of the wave and one measuring the negative part. More than two samples per
cycle increases the amplitude accuracy, but fewer than two samples causes the fre-
quency of the wave to be completely missed. Thus, the maximum frequency wave
that can be measured is one whose frequency is half the sample rate (since every
cycle needs two samples). This maximum frequency for a given sampling rate is
called the Nyquist frequency. Most information in human speech is in frequenciesNyquist

frequency
below 10,000 Hz; thus, a 20,000 Hz sampling rate would be necessary for com-
plete accuracy. But telephone speech is filtered by the switching network, and only
frequencies less than 4,000 Hz are transmitted by telephones. Thus, an 8,000 Hz
sampling rate is sufficient for telephone-bandwidth speech like the Switchboard
corpus, while 16,000 Hz sampling is often used for microphone speech.

Although using higher sampling rates produces higher ASR accuracy, we can’t
combine different sampling rates for training and testing ASR systems. Thus if
we are testing on a telephone corpus like Switchboard (8 KHz sampling), we must
downsample our training corpus to 8 KHz. Similarly, if we are training on mul-
tiple corpora and one of them includes telephone speech, we downsample all the
wideband corpora to 8Khz.

Amplitude measurements are stored as integers, either 8 bit (values from -128–
127) or 16 bit (values from -32768–32767). This process of representing real-valued
numbers as integers is called quantization; all values that are closer together thanquantization

the minimum granularity (the quantum size) are represented identically. We refer to
each sample at time index n in the digitized, quantized waveform as x[n].

Once data is quantized, it is stored in various formats. One parameter of these
formats is the sample rate and sample size discussed above; telephone speech is
often sampled at 8 kHz and stored as 8-bit samples, and microphone data is often
sampled at 16 kHz and stored as 16-bit samples. Another parameter is the number of
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channels. For stereo data or for two-party conversations, we can store both channelschannel

in the same file or we can store them in separate files. A final parameter is individual
sample storage—linearly or compressed. One common compression format used for
telephone speech is µ-law (often written u-law but still pronounced mu-law). The
intuition of log compression algorithms like µ-law is that human hearing is more
sensitive at small intensities than large ones; the log represents small values with
more faithfulness at the expense of more error on large values. The linear (unlogged)
values are generally referred to as linear PCM values (PCM stands for pulse codePCM

modulation, but never mind that). Here’s the equation for compressing a linear PCM
sample value x to 8-bit µ-law, (where µ=255 for 8 bits):

F(x) =
sgn(x) log(1+µ|x|)

log(1+µ)
−1≤ x≤ 1 (16.1)

There are a number of standard file formats for storing the resulting digitized wave-
file, such as Microsoft’s .wav and Apple’s AIFF all of which have special headers;
simple headerless “raw” files are also used. For example, the .wav format is a sub-
set of Microsoft’s RIFF format for multimedia files; RIFF is a general format that
can represent a series of nested chunks of data and control information. Figure 16.3
shows a simple .wav file with a single data chunk together with its format chunk.

Figure 16.3 Microsoft wavefile header format, assuming simple file with one chunk. Fol-
lowing this 44-byte header would be the data chunk.

16.2.2 Windowing
From the digitized, quantized representation of the waveform, we need to extract
spectral features from a small window of speech that characterizes part of a par-
ticular phoneme. Inside this small window, we can roughly think of the signal as
stationary (that is, its statistical properties are constant within this region). (Bystationary

contrast, in general, speech is a non-stationary signal, meaning that its statisticalnon-stationary

properties are not constant over time). We extract this roughly stationary portion of
speech by using a window which is non-zero inside a region and zero elsewhere, run-
ning this window across the speech signal and multiplying it by the input waveform
to produce a windowed waveform.

The speech extracted from each window is called a frame. The windowing isframe

characterized by three parameters: the window size or frame size of the window
(its width in milliseconds), the frame stride, (also called shift or offset) betweenstride

successive windows, and the shape of the window.
To extract the signal we multiply the value of the signal at time n, s[n] by the

value of the window at time n, w[n]:

y[n] = w[n]s[n] (16.2)

The window shape sketched in Fig. 16.4 is rectangular; you can see the ex-rectangular

tracted windowed signal looks just like the original signal. The rectangular window,
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Figure 16.4 Windowing, showing a 25 ms rectangular window with a 10ms stride.

however, abruptly cuts off the signal at its boundaries, which creates problems when
we do Fourier analysis. For this reason, for acoustic feature creation we more com-
monly use the Hamming window, which shrinks the values of the signal towardHamming

zero at the window boundaries, avoiding discontinuities. Figure 16.5 shows both;
the equations are as follows (assuming a window that is L frames long):

rectangular w[n] =

{
1 0≤ n≤ L−1
0 otherwise (16.3)

Hamming w[n] =

{
0.54−0.46cos( 2πn

L ) 0≤ n≤ L−1
0 otherwise

(16.4)

Time (s)
0 0.0475896

–0.5

0.4999

0

Rectangular window Hamming window

Time (s)
0.00455938 0.0256563

–0.4826

0.4999

0

Time (s)
0.00455938 0.0256563
–0.5

0.4999

0

Figure 16.5 Windowing a sine wave with the rectangular or Hamming windows.

16.2.3 Discrete Fourier Transform
The next step is to extract spectral information for our windowed signal; we need to
know how much energy the signal contains at different frequency bands. The tool
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for extracting spectral information for discrete frequency bands for a discrete-time
(sampled) signal is the discrete Fourier transform or DFT.

Discrete
Fourier

transform
DFT The input to the DFT is a windowed signal x[n]...x[m], and the output, for each

of N discrete frequency bands, is a complex number X [k] representing the magni-
tude and phase of that frequency component in the original signal. If we plot the
magnitude against the frequency, we can visualize the spectrum (see Appendix H
for more on spectra). For example, Fig. 16.6 shows a 25 ms Hamming-windowed
portion of a signal and its spectrum as computed by a DFT (with some additional
smoothing).
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Figure 16.6 (a) A 25 ms Hamming-windowed portion of a signal from the vowel [iy]
and (b) its spectrum computed by a DFT.

We do not introduce the mathematical details of the DFT here, except to note
that Fourier analysis relies on Euler’s formula, with j as the imaginary unit:Euler’s formula

e jθ = cosθ + j sinθ (16.5)

As a brief reminder for those students who have already studied signal processing,
the DFT is defined as follows:

X [k] =
N−1∑
n=0

x[n]e− j 2π
N kn (16.6)

A commonly used algorithm for computing the DFT is the fast Fourier transformfast Fourier
transform

or FFT. This implementation of the DFT is very efficient but only works for valuesFFT

of N that are powers of 2.

16.2.4 Mel Filter Bank and Log
The results of the FFT tell us the energy at each frequency band. Human hearing,
however, is not equally sensitive at all frequency bands; it is less sensitive at higher
frequencies. This bias toward low frequencies helps human recognition, since in-
formation in low frequencies (like formants) is crucial for distinguishing vowels or
nasals, while information in high frequencies (like stop bursts or fricative noise) is
less crucial for successful recognition. Modeling this human perceptual property
improves speech recognition performance in the same way.

We implement this intuition by collecting energies, not equally at each frequency
band, but according to the mel scale, an auditory frequency scale. A mel (Stevensmel

et al. 1937, Stevens and Volkmann 1940) is a unit of pitch. Pairs of sounds that are
perceptually equidistant in pitch are separated by an equal number of mels. The mel
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frequency m can be computed from the raw acoustic frequency by a log transforma-
tion:

mel( f ) = 1127ln(1+
f

700
) (16.7)

We implement this intuition by creating a bank of filters that collect energy from
each frequency band, spread logarithmically so that we have very fine resolution
at low frequencies, and less resolution at high frequencies. Figure 16.7 shows a
sample bank of triangular filters that implement this idea, that can be multiplied by
the spectrum to get a mel spectrum.

m1 m2 mM...mel spectrum

0 7700
0

0.5

1

Am
pl

itu
de

Frequency (Hz)
8K

Figure 16.7 The mel filter bank (Davis and Mermelstein, 1980). Each triangular filter,
spaced logarithmically along the mel scale, collects energy from a given frequency range.

Finally, we take the log of each of the mel spectrum values. The human response
to signal level is logarithmic (like the human response to frequency). Humans are
less sensitive to slight differences in amplitude at high amplitudes than at low ampli-
tudes. In addition, using a log makes the feature estimates less sensitive to variations
in input such as power variations due to the speaker’s mouth moving closer or further
from the microphone.

16.3 Speech Recognition Architecture

The basic architecture for ASR is the encoder-decoder (implemented with either
RNNs or Transformers), exactly the same architecture introduced for MT in Chap-
ter 13. Generally we start from the log mel spectral features described in the previous
section, and map to letters, although it’s also possible to map to induced morpheme-
like chunks like wordpieces or BPE.

Fig. 16.8 sketches the standard encoder-decoder architecture, which is com-
monly referred to as the attention-based encoder decoder or AED, or listen attendAED

and spell (LAS) after the two papers which first applied it to speech (Chorowskilisten attend
and spell

et al. 2014, Chan et al. 2016). The input is a sequence of t acoustic feature vectors
F = f1, f2, ..., ft , one vector per 10 ms frame. The output can be letters or word-
pieces; we’ll assume letters here. Thus the output sequence Y =(〈SOS〉,y1, ...,ym〈EOS〉),
assuming special start of sequence and end of sequence tokens 〈sos〉 and 〈eos〉 and
each yi is a character; for English we might choose the set:

yi ∈ {a,b,c, ...,z,0, ...,9,〈space〉,〈comma〉,〈period〉,〈apostrophe〉,〈unk〉}

Of course the encoder-decoder architecture is particularly appropriate when in-
put and output sequences have stark length differences, as they do for speech, with
very long acoustic feature sequences mapping to much shorter sequences of letters
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Figure 16.8 Schematic architecture for an encoder-decoder speech recognizer.

or words. A single word might be 5 letters long but, supposing it lasts about 2
seconds, would take 200 acoustic frames (of 10ms each).

Because this length difference is so extreme for speech, encoder-decoder ar-
chitectures for speech need to have a special compression stage that shortens the
acoustic feature sequence before the encoder stage. (Alternatively, we can use a loss
function that is designed to deal well with compression, like the CTC loss function
we’ll introduce in the next section.)

The goal of the subsampling is to produce a shorter sequence X = x1, ...,xn that
will be the input to the encoder. The simplest algorithm is a method sometimes
called low frame rate (Pundak and Sainath, 2016): for time i we stack (concatenate)low frame rate

the acoustic feature vector fi with the prior two vectors fi−1 and fi−2 to make a new
vector three times longer. Then we simply delete fi−1 and fi−2. Thus instead of
(say) a 40-dimensional acoustic feature vector every 10 ms, we have a longer vector
(say 120-dimensional) every 30 ms, with a shorter sequence length n = t

3 .1

After this compression stage, encoder-decoders for speech use the same archi-
tecture as for MT or other text, composed of either RNNs (LSTMs) or Transformers.

For inference, the probability of the output string Y is decomposed as:

p(y1, . . . ,yn) =

n∏
i=1

p(yi|y1, . . . ,yi−1,X) (16.8)

We can produce each letter of the output via greedy decoding:

ŷi = argmaxchar∈ AlphabetP(char|y1...yi−1,X) (16.9)

Alternatively we can use beam search as described in the next section. This is par-
ticularly relevant when we are adding a language model.

Adding a language model Since an encoder-decoder model is essentially a con-
ditional language model, encoder-decoders implicitly learn a language model for the
output domain of letters from their training data. However, the training data (speech
paired with text transcriptions) may not include sufficient text to train a good lan-
guage model. After all, it’s easier to find enormous amounts of pure text training

1 There are also more complex alternatives for subsampling, like using a convolutional net that down-
samples with max pooling, or layers of pyramidal RNNs, RNNs where each successive layer has half
the number of RNNs as the previous layer.
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data than it is to find text paired with speech. Thus we can can usually improve a
model at least slightly by incorporating a very large language model.

The simplest way to do this is to use beam search to get a final beam of hy-
pothesized sentences; this beam is sometimes called an n-best list. We then use an-best list

language model to rescore each hypothesis on the beam. The scoring is done by in-rescore

terpolating the score assigned by the language model with the encoder-decoder score
used to create the beam, with a weight λ tuned on a held-out set. Also, since most
models prefer shorter sentences, ASR systems normally have some way of adding a
length factor. One way to do this is to normalize the probability by the number of
characters in the hypothesis |Y |c. The following is thus a typical scoring function
(Chan et al., 2016):

score(Y |X) =
1
|Y |c

logP(Y |X)+λ logPLM(Y ) (16.10)

16.3.1 Learning
Encoder-decoders for speech are trained with the normal cross-entropy loss gener-
ally used for conditional language models. At timestep i of decoding, the loss is the
log probability of the correct token (letter) yi:

LCE = − log p(yi|y1, . . . ,yi−1,X) (16.11)

The loss for the entire sentence is the sum of these losses:

LCE = −
m∑

i=1

log p(yi|y1, . . . ,yi−1,X) (16.12)

This loss is then backpropagated through the entire end-to-end model to train the
entire encoder-decoder.

As we described in Chapter 13, we normally use teacher forcing, in which the
decoder history is forced to be the correct gold yi rather than the predicted ŷi. It’s
also possible to use a mixture of the gold and decoder output, for example using
the gold output 90% of the time, but with probability .1 taking the decoder output
instead:

LCE = − log p(yi|y1, . . . , ŷi−1,X) (16.13)

16.4 CTC

We pointed out in the previous section that speech recognition has two particular
properties that make it very appropriate for the encoder-decoder architecture, where
the encoder produces an encoding of the input that the decoder uses attention to
explore. First, in speech we have a very long acoustic input sequence X mapping to
a much shorter sequence of letters Y , and second, it’s hard to know exactly which
part of X maps to which part of Y .

In this section we briefly introduce an alternative to encoder-decoder: an algo-
rithm and loss function called CTC, short for Connectionist Temporal Classifica-CTC

tion (Graves et al., 2006), that deals with these problems in a very different way. The
intuition of CTC is to output a single character for every frame of the input, so that



12 CHAPTER 16 • AUTOMATIC SPEECH RECOGNITION AND TEXT-TO-SPEECH

the output is the same length as the input, and then to apply a collapsing function
that combines sequences of identical letters, resulting in a shorter sequence.

Let’s imagine inference on someone saying the word dinner, and let’s suppose
we had a function that chooses the most probable letter for each input spectral frame
representation xi. We’ll call the sequence of letters corresponding to each input
frame an alignment, because it tells us where in the acoustic signal each letter alignsalignment

to. Fig. 16.9 shows one such alignment, and what happens if we use a collapsing
function that just removes consecutive duplicate letters.
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Y (output)
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r
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r

x12

r

x13

r

x14

d i n e r

wavefile

Figure 16.9 A naive algorithm for collapsing an alignment between input and letters.

Well, that doesn’t work; our naive algorithm has transcribed the speech as diner,
not dinner! Collapsing doesn’t handle double letters. There’s also another problem
with our naive function; it doesn’t tell us what symbol to align with silence in the
input. We don’t want to be transcribing silence as random letters!

The CTC algorithm solves both problems by adding to the transcription alphabet
a special symbol for a blank, which we’ll represent as . The blank can be used inblank

the alignment whenever we don’t want to transcribe a letter. Blank can also be used
between letters; since our collapsing function collapses only consecutive duplicate
letters, it won’t collapse across . More formally, let’s define the mapping B : a→ y
between an alignment a and an output y, which collapses all repeated letters and
then removes all blanks. Fig. 16.10 sketches this collapsing function B.

X (input)

A (alignment)

remove blanks

d

x1

i

x2 x3

n

x4

n

x5 x6

n

x7

e

x8

r

x9

r

x10

r

x11

r

x12 x13 x14

d i n e rn

merge duplicates d i n e rn

Y (output) d i n e rn

␣
␣

␣
␣

␣
␣ ␣

Figure 16.10 The CTC collapsing function B, showing the space blank character ; re-
peated (consecutive) characters in an alignment A are removed to form the output Y .

The CTC collapsing function is many-to-one; lots of different alignments map
to the same output string. For example, the alignment shown in Fig. 16.10 is not
the only alignment that results in the string dinner. Fig. 16.11 shows some other
alignments that would produce the same output.

It’s useful to think of the set of all alignments that might produce the same output
Y . We’ll use the inverse of our B function, called B−1, and represent that set as
B−1(Y ).
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d i n n n e e e r r r␣ ␣
d d i n n n e r r␣ ␣ ␣
d d d i n n n e r r␣

i
␣␣

␣ ␣ ␣
Figure 16.11 Three other legitimate alignments producing the transcript dinner.

16.4.1 CTC Inference
Before we see how to compute PCTC(Y |X) let’s first see how CTC assigns a proba-
bility to one particular alignment Â = {â1, . . . , ân}. CTC makes a strong conditional
independence assumption: it assumes that, given the input X , the CTC model output
at at time t is independent of the output labels at any other time ai. Thus:

PCTC(A|X) =

T∏
t=1

p(at |X) (16.14)

Thus to find the best alignment Â = {â1, . . . , âT} we can greedily choose the charac-
ter with the max probability at each time step t:

ât = argmax
c∈C

pt(c|X) (16.15)

We then pass the resulting sequence A to the CTC collapsing function B to get the
output sequence Y .

Let’s talk about how this simple inference algorithm for finding the best align-
ment A would be implemented. Because we are making a decision at each time
point, we can treat CTC as a sequence-modeling task, where we output one letter
ŷt at time t corresponding to each input token xt , eliminating the need for a full de-
coder. Fig. 16.12 sketches this architecture, where we take an encoder, produce a
hidden state ht at each timestep, and decode by taking a softmax over the character
vocabulary at each time step.

ENCODER

…

yn

Feature Computation

Subsampling

… ftf1 log Mel spectrum

Shorter input
sequence X

y1
i

y2
i

y3
i

y4
t

x1 xn

Classifier
+softmax

…
t
y5

…

…

output letter
sequence Y

Figure 16.12 Inference with CTC: using an encoder-only model, with decoding done by
simple softmaxes over the hidden state ht at each output step.

Alas, there is a potential flaw with the inference algorithm sketched in (Eq. 16.15)
and Fig. 16.11. The problem is that we chose the most likely alignment A, but the
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most likely alignment may not correspond to the most likely final collapsed output
string Y . That’s because there are many possible alignments that lead to the same
output string, and hence the most likely output string might not correspond to the
most probable alignment. For example, imagine the most probable alignment A for
an input X = [x1x2x3] is the string [a b ε] but the next two most probable alignments
are [b ε b] and [ε b b]. The output Y =[b b], summing over those two alignments,
might be more probable than Y =[a b].

For this reason, the most probable output sequence Y is the one that has, not
the single best CTC alignment, but the highest sum over the probability of all its
possible alignments:

PCTC(Y |X) =
∑

A∈B−1(Y )

P(A|X)

=
∑

A∈B−1(Y )

T∏
t=1

p(at |ht)

Ŷ = argmax
Y

PCTC(Y |X) (16.16)

Alas, summing over all alignments is very expensive (there are a lot of alignments),
so we approximate this sum by using a version of Viterbi beam search that cleverly
keeps in the beam the high-probability alignments that map to the same output string,
and sums those as an approximation of (Eq. 16.16). See Hannun (2017) for a clear
explanation of this extension of beam search for CTC.

Because of the strong conditional independence assumption mentioned earlier
(that the output at time t is independent of the output at time t−1, given the input),
CTC does not implicitly learn a language model over the data (unlike the attention-
based encoder-decoder architectures). It is therefore essential when using CTC to
interpolate a language model (and some sort of length factor L(Y )) using interpola-
tion weights that are trained on a devset:

scoreCTC(Y |X) = logPCTC(Y |X)+λ1 logPLM(Y )λ2L(Y ) (16.17)

16.4.2 CTC Training
To train a CTC-based ASR system, we use negative log-likelihood loss with a special
CTC loss function. Thus the loss for an entire dataset D is the sum of the negative
log-likelihoods of the correct output Y for each input X :

LCTC =
∑

(X ,Y )∈D

− logPCTC(Y |X) (16.18)

To compute CTC loss function for a single input pair (X ,Y ), we need the probability
of the output Y given the input X . As we saw in Eq. 16.16, to compute the probability
of a given output Y we need to sum over all the possible alignments that would
collapse to Y . In other words:

PCTC(Y |X) =
∑

A∈B−1(Y )

T∏
t=1

p(at |ht) (16.19)

Naively summing over all possible alignments is not feasible (there are too many
alignments). However, we can efficiently compute the sum by using dynamic pro-
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gramming to merge alignments, with a version of the forward-backward algo-
rithm also used to train HMMs (Appendix A) and CRFs. The original dynamic pro-
gramming algorithms for both training and inference are laid out in (Graves et al.,
2006); see (Hannun, 2017) for a detailed explanation of both.

16.4.3 Combining CTC and Encoder-Decoder
It’s also possible to combine the two architectures/loss functions we’ve described,
the cross-entropy loss from the encoder-decoder architecture, and the CTC loss.
Fig. 16.13 shows a sketch. For training, we can simply weight the two losses with a
λ tuned on a devset:

L =−λ logPencdec(Y |X)− (1−λ ) logPctc(Y |X) (16.20)

For inference, we can combine the two with the language model (or the length
penalty), again with learned weights:

Ŷ = argmax
Y

[λ logPencdec(Y |X)− (1−λ ) logPCTC(Y |X)+ γ logPLM(Y )] (16.21)

ENCODER

…

DECODER

…

H

<s> i t ‘ s  t i m
x1 xn

…

…

i   t   ’   s      t   i   m   e  …

CTC Loss Encoder-Decoder Loss

Figure 16.13 Combining the CTC and encoder-decoder loss functions.

16.4.4 Streaming Models: RNN-T for improving CTC
Because of the strong independence assumption in CTC (assuming that the output
at time t is independent of the output at time t − 1), recognizers based on CTC
don’t achieve as high an accuracy as the attention-based encoder-decoder recog-
nizers. CTC recognizers have the advantage, however, that they can be used for
streaming. Streaming means recognizing words on-line rather than waiting untilstreaming

the end of the sentence to recognize them. Streaming is crucial for many applica-
tions, from commands to dictation, where we want to start recognition while the
user is still talking. Algorithms that use attention need to compute the hidden state
sequence over the entire input first in order to provide the attention distribution con-
text, before the decoder can start decoding. By contrast, a CTC algorithm can input
letters from left to right immediately.

If we want to do streaming, we need a way to improve CTC recognition to re-
move the conditional independent assumption, enabling it to know about output his-
tory. The RNN-Transducer (RNN-T), shown in Fig. 16.14, is just such a modelRNN-T

(Graves 2012, Graves et al. 2013). The RNN-T has two main components: a CTC
acoustic model, and a separate language model component called the predictor that
conditions on the output token history. At each time step t, the CTC encoder outputs



16 CHAPTER 16 • AUTOMATIC SPEECH RECOGNITION AND TEXT-TO-SPEECH

a hidden state henc
t given the input x1...xt . The language model predictor takes as in-

put the previous output token (not counting blanks), outputting a hidden state hpred
u .

The two are passed through another network whose output is then passed through a
softmax to predict the next character.

PRNN−T (Y |X) =
∑

A∈B−1(Y )

P(A|X)

=
∑

A∈B−1(Y )

T∏
t=1

p(at |ht ,y<ut )

ENCODER

P ( yt,u | x[1..t] , y[1..u-1] )

xt

PREDICTION
NETWORK

yu-1

JOINT NETWORK

henc
t

hpred
u

SOFTMAX

zt,u
DECODER

Figure 16.14 The RNN-T model computing the output token distribution at time t by inte-
grating the output of a CTC acoustic encoder and a separate ‘predictor’ language model.

16.5 ASR Evaluation: Word Error Rate

The standard evaluation metric for speech recognition systems is the word errorword error

rate. The word error rate is based on how much the word string returned by the
recognizer (the hypothesized word string) differs from a reference transcription.
The first step in computing word error is to compute the minimum edit distance in
words between the hypothesized and correct strings, giving us the minimum num-
ber of word substitutions, word insertions, and word deletions necessary to map
between the correct and hypothesized strings. The word error rate (WER) is then
defined as follows (note that because the equation includes insertions, the error rate
can be greater than 100%):

Word Error Rate = 100× Insertions+Substitutions+Deletions
Total Words in Correct Transcript

Here is a sample alignment between a reference and a hypothesis utterance fromalignment

the CallHome corpus, showing the counts used to compute the error rate:

REF: i *** ** UM the PHONE IS i LEFT THE portable **** PHONE UPSTAIRS last night
HYP: i GOT IT TO the ***** FULLEST i LOVE TO portable FORM OF STORES last night
Eval: I I S D S S S I S S

This utterance has six substitutions, three insertions, and one deletion:

Word Error Rate = 100
6+3+1

13
= 76.9%
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The standard method for computing word error rates is a free script called sclite,
available from the National Institute of Standards and Technologies (NIST) (NIST,
2005). Sclite is given a series of reference (hand-transcribed, gold-standard) sen-
tences and a matching set of hypothesis sentences. Besides performing alignments,
and computing word error rate, sclite performs a number of other useful tasks. For
example, for error analysis it gives useful information such as confusion matrices
showing which words are often misrecognized for others, and summarizes statistics
of words that are often inserted or deleted. sclite also gives error rates by speaker
(if sentences are labeled for speaker ID), as well as useful statistics like the sentence
error rate, the percentage of sentences with at least one word error.Sentence error

rate

Statistical significance for ASR: MAPSSWE or MacNemar

As with other language processing algorithms, we need to know whether a particular
improvement in word error rate is significant or not.

The standard statistical tests for determining if two word error rates are different
is the Matched-Pair Sentence Segment Word Error (MAPSSWE) test, introduced in
Gillick and Cox (1989).

The MAPSSWE test is a parametric test that looks at the difference between
the number of word errors the two systems produce, averaged across a number of
segments. The segments may be quite short or as long as an entire utterance; in
general, we want to have the largest number of (short) segments in order to justify
the normality assumption and to maximize power. The test requires that the errors
in one segment be statistically independent of the errors in another segment. Since
ASR systems tend to use trigram LMs, we can approximate this requirement by
defining a segment as a region bounded on both sides by words that both recognizers
get correct (or by turn/utterance boundaries). Here’s an example from NIST (2007)
with four regions:

I II III IV
REF: |it was|the best|of|times it|was the worst|of times| |it was

| | | | | | | |
SYS A:|ITS |the best|of|times it|IS the worst |of times|OR|it was

| | | | | | | |
SYS B:|it was|the best| |times it|WON the TEST |of times| |it was

In region I, system A has two errors (a deletion and an insertion) and system B
has zero; in region III, system A has one error (a substitution) and system B has two.
Let’s define a sequence of variables Z representing the difference between the errors
in the two systems as follows:

Ni
A the number of errors made on segment i by system A

Ni
B the number of errors made on segment i by system B

Z Ni
A−Ni

B, i = 1,2, · · · ,n where n is the number of segments

In the example above, the sequence of Z values is {2,−1,−1,1}. Intuitively, if
the two systems are identical, we would expect the average difference, that is, the
average of the Z values, to be zero. If we call the true average of the differences
muz, we would thus like to know whether muz = 0. Following closely the original
proposal and notation of Gillick and Cox (1989), we can estimate the true average
from our limited sample as µ̂z =

∑n
i=1 Zi/n. The estimate of the variance of the Zi’s

is

σ
2
z =

1
n−1

n∑
i=1

(Zi−µz)
2 (16.22)
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Let

W =
µ̂z

σz/
√

n
(16.23)

For a large enough n (> 50), W will approximately have a normal distribution with
unit variance. The null hypothesis is H0 : µz = 0, and it can thus be rejected if
2 ∗P(Z ≥ |w|) ≤ 0.05 (two-tailed) or P(Z ≥ |w|) ≤ 0.05 (one-tailed), where Z is
standard normal and w is the realized value W ; these probabilities can be looked up
in the standard tables of the normal distribution.

Earlier work sometimes used McNemar’s test for significance, but McNemar’sMcNemar’s test

is only applicable when the errors made by the system are independent, which is not
true in continuous speech recognition, where errors made on a word are extremely
dependent on errors made on neighboring words.

Could we improve on word error rate as a metric? It would be nice, for exam-
ple, to have something that didn’t give equal weight to every word, perhaps valuing
content words like Tuesday more than function words like a or of. While researchers
generally agree that this would be a good idea, it has proved difficult to agree on
a metric that works in every application of ASR. For dialogue systems, however,
where the desired semantic output is more clear, a metric called slot error rate or
concept error rate has proved extremely useful; it is discussed in Chapter 15 on page
??.

16.6 TTS

The goal of text-to-speech (TTS) systems is to map from strings of letters to wave-
forms, a technology that’s important for a variety of applications from dialogue sys-
tems to games to education.

Like ASR systems, TTS systems are generally based on the encoder-decoder
architecture, either using LSTMs or Transformers. There is a general difference in
training. The default condition for ASR systems is to be speaker-independent: they
are trained on large corpora with thousands of hours of speech from many speakers
because they must generalize well to an unseen test speaker. By contrast, in TTS, it’s
less crucial to use multiple voices, and so basic TTS systems are speaker-dependent:
trained to have a consistent voice, on much less data, but all from one speaker. For
example, one commonly used public domain dataset, the LJ speech corpus, consists
of 24 hours of one speaker, Linda Johnson, reading audio books in the LibriVox
project (Ito and Johnson, 2017), much smaller than standard ASR corpora which are
hundreds or thousands of hours.2

We generally break up the TTS task into two components. The first component
is an encoder-decoder model for spectrogram prediction: it maps from strings of
letters to mel spectrographs: sequences of mel spectral values over time. Thus we

2 There is also recent TTS research on the task of multi-speaker TTS, in which a system is trained on
speech from many speakers, and can switch between different voices.
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might map from this string:

It’s time for lunch!

to the following mel spectrogram:

The second component maps from mel spectrograms to waveforms. Generating
waveforms from intermediate representations like spectrograms is called vocodingvocoding

and this second component is called a vocoder:vocoder

These standard encoder-decoder algorithms for TTS are still quite computation-
ally intensive, so a significant focus of modern research is on ways to speed them
up.

16.6.1 TTS Preprocessing: Text normalization
Before either of these two steps, however, TTS systems require text normaliza-
tion preprocessing for handling non-standard words: numbers, monetary amounts,non-standard

words
dates, and other concepts that are verbalized differently than they are spelled. A TTS
system seeing a number like 151 needs to know to verbalize it as one hundred fifty
one if it occurs as $151 but as one fifty one if it occurs in the context 151 Chapulte-
pec Ave.. The number 1750 can be spoken in at least four different ways, depending
on the context:

seventeen fifty: (in “The European economy in 1750”)
one seven five zero: (in “The password is 1750”)
seventeen hundred and fifty: (in “1750 dollars”)
one thousand, seven hundred, and fifty: (in “1750 dollars”)

Often the verbalization of a non-standard word depends on its meaning (what
Taylor (2009) calls its semiotic class). Fig. 16.15 lays out some English non-
standard word types.

Many classes have preferred realizations. A year is generally read as paired
digits (e.g., seventeen fifty for 1750). $3.2 billion must be read out with the
word dollars at the end, as three point two billion dollars. Some ab-
breviations like N.Y. are expanded (to New York), while other acronyms like GPU
are pronounced as letter sequences. In languages with grammatical gender, normal-
ization may depend on morphological properties. In French, the phrase 1 mangue
(‘one mangue’) is normalized to une mangue, but 1 ananas (‘one pineapple’) is
normalized to un ananas. In German, Heinrich IV (‘Henry IV’) can be normalized
to Heinrich der Vierte, Heinrich des Vierten, Heinrich dem Vierten, or
Heinrich den Vierten depending on the grammatical case of the noun (Demberg,
2006).
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semiotic class examples verbalization
abbreviations gov’t, N.Y., mph government
acronyms read as letters GPU, D.C., PC, UN, IBM G P U
cardinal numbers 12, 45, 1/2, 0.6 twelve
ordinal numbers May 7, 3rd, Bill Gates III seventh
numbers read as digits Room 101 one oh one
times 3.20, 11:45 eleven forty five
dates 28/02 (or in US, 2/28) February twenty eighth
years 1999, 80s, 1900s, 2045 nineteen ninety nine
money $3.45, e250, $200K three dollars forty five
money in tr/m/billions $3.45 billion three point four five billion dollars
percentage 75% 3.4% seventy five percent

Figure 16.15 Some types of non-standard words in text normalization; see Sproat et al.
(2001) and (van Esch and Sproat, 2018) for many more.

Modern end-to-end TTS systems can learn to do some normalization themselves,
but TTS systems are only trained on a limited amount of data (like the 220,000 words
we mentioned above for the LJ corpus (Ito and Johnson, 2017)), and so a separate
normalization step is important.

Normalization can be done by rule or by an encoder-decoder model. Rule-based
normalization is done in two stages: tokenization and verbalization. In the tokeniza-
tion stage we hand-write rules to detect non-standard words. These can be regular
expressions, like the following for detecting years:

/(1[89][0-9][0-9])|(20[0-9][0-9]/

A second pass of rules express how to verbalize each semiotic class. Larger TTS
systems instead use more complex rule-systems, like the Kestral system of (Ebden
and Sproat, 2015), which first classifies and parses each input into a normal form
and then produces text using a verbalization grammar. Rules have the advantage
that they don’t require training data, and they can be designed for high precision, but
can be brittle, and require expert rule-writers so are hard to maintain.

The alternative model is to use encoder-decoder models, which have been shown
to work better than rules for such transduction tasks, but do require expert-labeled
training sets in which non-standard words have been replaced with the appropriate
verbalization; such training sets for some languages are available (Sproat and Gor-
man 2018, Zhang et al. 2019).

In the simplest encoder-decoder setting, we simply treat the problem like ma-
chine translation, training a system to map from:

They live at 224 Mission St.

to

They live at two twenty four Mission Street

While encoder-decoder algorithms are highly accurate, they occasionally pro-
duce errors that are egregious; for example normalizing 45 minutes as forty five mil-
limeters. To address this, more complex systems use mechanisms like lightweight
covering grammars, which enumerate a large set of possible verbalizations but
don’t try to disambiguate, to constrain the decoding to avoid such outputs (Zhang
et al., 2019).

16.6.2 TTS: Spectrogram prediction
The exact same architecture we described for ASR—the encoder-decoder with attention–
can be used for the first component of TTS. Here we’ll give a simplified overview
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of the Tacotron2 architecture (Shen et al., 2018), which extends the earlier TacotronTacotron2

(Wang et al., 2017) architecture and the Wavenet vocoder (van den Oord et al.,Wavenet

2016). Fig. 16.16 sketches out the entire architecture.
The encoder’s job is to take a sequence of letters and produce a hidden repre-

sentation representing the letter sequence, which is then used by the attention mech-
anism in the decoder. The Tacotron2 encoder first maps every input grapheme to
a 512-dimensional character embedding. These are then passed through a stack
of 3 convolutional layers, each containing 512 filters with shape 5× 1, i.e. each
filter spanning 5 characters, to model the larger letter context. The output of the
final convolutional layer is passed through a biLSTM to produce the final encod-
ing. It’s common to use a slightly higher quality (but slower) version of attention
called location-based attention, in which the computation of the α values (Eq. ??location-based

attention
in Chapter 8) makes use of the α values from the prior time-state.

In the decoder, the predicted mel spectrum from the prior time slot is passed
through a small pre-net as a bottleneck. This prior output is then concatenated with
the encoder’s attention vector context and passed through 2 LSTM layers. The out-
put of this LSTM is used in two ways. First, it is passed through a linear layer, and
some output processing, to autoregressively predict one 80-dimensional log-mel fil-
terbank vector frame (50 ms, with a 12.5 ms stride) at each step. Second, it is passed
through another linear layer to a sigmoid to make a “stop token prediction” decision
about whether to stop producing output.

While linear spectrograms discard phase information (and are
therefore lossy), algorithms such as Griffin-Lim [14] are capable of
estimating this discarded information, which enables time-domain
conversion via the inverse short-time Fourier transform. Mel spectro-
grams discard even more information, presenting a challenging in-
verse problem. However, in comparison to the linguistic and acoustic
features used in WaveNet, the mel spectrogram is a simpler, lower-
level acoustic representation of audio signals. It should therefore
be straightforward for a similar WaveNet model conditioned on mel
spectrograms to generate audio, essentially as a neural vocoder. In-
deed, we will show that it is possible to generate high quality audio
from mel spectrograms using a modified WaveNet architecture.

2.2. Spectrogram Prediction Network

As in Tacotron, mel spectrograms are computed through a short-
time Fourier transform (STFT) using a 50 ms frame size, 12.5 ms
frame hop, and a Hann window function. We experimented with a
5 ms frame hop to match the frequency of the conditioning inputs
in the original WaveNet, but the corresponding increase in temporal
resolution resulted in significantly more pronunciation issues.

We transform the STFT magnitude to the mel scale using an 80
channel mel filterbank spanning 125 Hz to 7.6 kHz, followed by log
dynamic range compression. Prior to log compression, the filterbank
output magnitudes are clipped to a minimum value of 0.01 in order
to limit dynamic range in the logarithmic domain.

The network is composed of an encoder and a decoder with atten-
tion. The encoder converts a character sequence into a hidden feature
representation which the decoder consumes to predict a spectrogram.
Input characters are represented using a learned 512-dimensional
character embedding, which are passed through a stack of 3 convolu-
tional layers each containing 512 filters with shape 5 ⇥ 1, i.e., where
each filter spans 5 characters, followed by batch normalization [18]
and ReLU activations. As in Tacotron, these convolutional layers
model longer-term context (e.g., N -grams) in the input character
sequence. The output of the final convolutional layer is passed into a
single bi-directional [19] LSTM [20] layer containing 512 units (256
in each direction) to generate the encoded features.

The encoder output is consumed by an attention network which
summarizes the full encoded sequence as a fixed-length context vector
for each decoder output step. We use the location-sensitive attention
from [21], which extends the additive attention mechanism [22] to
use cumulative attention weights from previous decoder time steps
as an additional feature. This encourages the model to move forward
consistently through the input, mitigating potential failure modes
where some subsequences are repeated or ignored by the decoder.
Attention probabilities are computed after projecting inputs and lo-
cation features to 128-dimensional hidden representations. Location
features are computed using 32 1-D convolution filters of length 31.

The decoder is an autoregressive recurrent neural network which
predicts a mel spectrogram from the encoded input sequence one
frame at a time. The prediction from the previous time step is first
passed through a small pre-net containing 2 fully connected layers
of 256 hidden ReLU units. We found that the pre-net acting as an
information bottleneck was essential for learning attention. The pre-
net output and attention context vector are concatenated and passed
through a stack of 2 uni-directional LSTM layers with 1024 units.
The concatenation of the LSTM output and the attention context
vector is projected through a linear transform to predict the target
spectrogram frame. Finally, the predicted mel spectrogram is passed
through a 5-layer convolutional post-net which predicts a residual
to add to the prediction to improve the overall reconstruction. Each
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Fig. 1. Block diagram of the Tacotron 2 system architecture.

post-net layer is comprised of 512 filters with shape 5 ⇥ 1 with batch
normalization, followed by tanh activations on all but the final layer.

We minimize the summed mean squared error (MSE) from before
and after the post-net to aid convergence. We also experimented
with a log-likelihood loss by modeling the output distribution with
a Mixture Density Network [23, 24] to avoid assuming a constant
variance over time, but found that these were more difficult to train
and they did not lead to better sounding samples.

In parallel to spectrogram frame prediction, the concatenation of
decoder LSTM output and the attention context is projected down
to a scalar and passed through a sigmoid activation to predict the
probability that the output sequence has completed. This “stop token”
prediction is used during inference to allow the model to dynamically
determine when to terminate generation instead of always generating
for a fixed duration. Specifically, generation completes at the first
frame for which this probability exceeds a threshold of 0.5.

The convolutional layers in the network are regularized using
dropout [25] with probability 0.5, and LSTM layers are regularized
using zoneout [26] with probability 0.1. In order to introduce output
variation at inference time, dropout with probability 0.5 is applied
only to layers in the pre-net of the autoregressive decoder.

In contrast to the original Tacotron, our model uses simpler build-
ing blocks, using vanilla LSTM and convolutional layers in the en-
coder and decoder instead of “CBHG” stacks and GRU recurrent
layers. We do not use a “reduction factor”, i.e., each decoder step
corresponds to a single spectrogram frame.

2.3. WaveNet Vocoder

We use a modified version of the WaveNet architecture from [8] to
invert the mel spectrogram feature representation into time-domain
waveform samples. As in the original architecture, there are 30
dilated convolution layers, grouped into 3 dilation cycles, i.e., the
dilation rate of layer k (k = 0 . . . 29) is 2k (mod 10). To work with
the 12.5 ms frame hop of the spectrogram frames, only 2 upsampling
layers are used in the conditioning stack instead of 3 layers.

Instead of predicting discretized buckets with a softmax layer,
we follow PixelCNN++ [27] and Parallel WaveNet [28] and use a 10-
component mixture of logistic distributions (MoL) to generate 16-bit
samples at 24 kHz. To compute the logistic mixture distribution, the
WaveNet stack output is passed through a ReLU activation followed

Encoder

Decoder

Vocoder

Figure 16.16 The Tacotron2 architecture: An encoder-decoder maps from graphemes to
mel spectrograms, followed by a vocoder that maps to wavefiles. Figure modified from Shen
et al. (2018).

The system is trained on gold log-mel filterbank features, using teacher forcing,
that is the decoder is fed the correct log-model spectral feature at each decoder step
instead of the predicted decoder output from the prior step.

16.6.3 TTS: Vocoding
The vocoder for Tacotron 2 is an adaptation of the WaveNet vocoder (van den OordWaveNet

et al., 2016). Here we’ll give a somewhat simplified description of vocoding using
WaveNet.

Recall that the goal of the vocoding process here will be to invert a log mel spec-
trum representations back into a time-domain waveform representation. WaveNet is
an autoregressive network, like the language models we introduced in Chapter 8. It
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takes spectrograms as input and produces audio output represented as sequences of
8-bit mu-law (page 6). The probability of a waveform , a sequence of 8-bit mu-law
values Y = y1, ...,yt , given an intermediate input mel spectrogram h is computed as:

p(Y ) =
t∏

t=1

P(yt |y1, ...,yt−1,h1, ...,ht) (16.24)

This probability distribution is modeled by a stack of special convolution layers,
which include a specific convolutional structure called dilated convolutions, and a
specific non-linearity function.

A dilated convolution is a subtype of causal convolutional layer. Causal or
masked convolutions look only at the past input, rather than the future; the pre-
diction of yt+1 can only depend on y1, ...,yt , useful for autoregressive left-to-right
processing. In dilated convolutions, at each successive layer we apply the convolu-dilated

convolutions
tional filter over a span longer than its length by skipping input values. Thus at time
t with a dilation value of 1, a convolutional filter of length 2 would see input values
xt and xt−1. But a filter with a distillation value of 2 would skip an input, so would
see input values xt and xt−1. Fig. 16.17 shows the computation of the output at time
t with 4 dilated convolution layers with dilation values, 1, 2, 4, and 8.

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1⇥1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)

ln (1 + µ)
,

3

Figure 16.17 Dilated convolutions, showing one dilation cycle size of 4, i.e., dilation values
of 1, 2, 4, 8. Figure from van den Oord et al. (2016).

The Tacotron 2 synthesizer uses 12 convolutional layers in two cycles with a
dilation cycle size of 6, meaning that the first 6 layers have dilations of 1, 2, 4, 8, 16,
and 32. and the next 6 layers again have dilations of 1, 2, 4, 8, 16, and 32. Dilated
convolutions allow the vocoder to grow the receptive field exponentially with depth.

WaveNet predicts mu-law audio samples. Recall from page 6 that this is a stan-
dard compression for audio in which the values at each sampling timestep are com-
pressed into 8-bits. This means that we can predict the value of each sample with a
simple 256-way categorical classifier. The output of the dilated convolutions is thus
passed through a softmax which makes this 256-way decision.

The spectrogram prediction encoder-decoder and the WaveNet vocoder are trained
separately. After the spectrogram predictor is trained, the spectrogram prediction
network is run in teacher-forcing mode, with each predicted spectral frame condi-
tioned on the encoded text input and the previous frame from the ground truth spec-
trogram. This sequence of ground truth-aligned spectral features and gold audio
output is then used to train the vocoder.

This has been only a high-level sketch of the TTS process. There are numer-
ous important details that the reader interested in going further with TTS may want
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to look into. For example WaveNet uses a special kind of a gated activation func-
tion as its non-linearity, and contains residual and skip connections. In practice,
predicting 8-bit audio values doesn’t as work as well as 16-bit, for which a simple
softmax is insufficient, so decoders use fancier ways as the last step of predicting
audio sample values, like mixtures of distributions. Finally, the WaveNet vocoder
as we have described it would be so slow as to be useless; many different kinds of
efficiency improvements are necessary in practice, for example by finding ways to
do non-autoregressive generation, avoiding the latency of having to wait to generate
each frame until the prior frame has been generated, and instead making predictions
in parallel. We encourage the interested reader to consult the original papers and
various version of the code.

16.6.4 TTS Evaluation
Speech synthesis systems are evaluated by human listeners. (The development of a
good automatic metric for synthesis evaluation, one that would eliminate the need
for expensive and time-consuming human listening experiments, remains an open
and exciting research topic.)

We evaluate the quality of synthesized utterances by playing a sentence to lis-
teners and ask them to give a mean opinion score (MOS), a rating of how goodMOS

the synthesized utterances are, usually on a scale from 1–5. We can then compare
systems by comparing their MOS scores on the same sentences (using, e.g., paired
t-tests to test for significant differences).

If we are comparing exactly two systems (perhaps to see if a particular change
actually improved the system), we can use AB tests. In AB tests, we play the sameAB tests

sentence synthesized by two different systems (an A and a B system). The human
listeners choose which of the two utterances they like better. We do this for say
50 sentences (presented in random order) and compare the number of sentences
preferred for each system.

16.7 Other Speech Tasks

While we have focused on speech recognition and TTS in this chapter, there are a
wide variety of speech-related tasks.

The task of wake word detection is to detect a word or short phrase, usually inwake word

order to wake up a voice-enable assistant like Alexa, Siri, or the Google Assistant.
The goal with wake words is build the detection into small devices at the computing
edge, to maintain privacy by transmitting the least amount of user speech to a cloud-
based server. Thus wake word detectors need to be fast, small footprint software that
can fit into embedded devices. Wake word detectors usually use the same frontend
feature extraction we saw for ASR, often followed by a whole-word classifier.

Speaker diarization is the task of determining ‘who spoke when’ in a longspeaker
diarization

multi-speaker audio recording, marking the start and end of each speaker’s turns in
the interaction. This can be useful for transcribing meetings, classroom speech, or
medical interactions. Often diarization systems use voice activity detection (VAD) to
find segments of continuous speech, extract speaker embedding vectors, and cluster
the vectors to group together segments likely from the same speaker. More recent
work is investigating end-to-end algorithms to map directly from input speech to a
sequence of speaker labels for each frame.
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Speaker recognition, is the task of identifying a speaker. We generally distin-speaker
recognition

guish the subtasks of speaker verification, where we make a binary decision (is
this speaker X or not?), such as for security when accessing personal information
over the telephone, and speaker identification, where we make a one of N decision
trying to match a speaker’s voice against a database of many speakers . These tasks
are related to language identification, in which we are given a wavefile and mustlanguage

identification
identify which language is being spoken; this is useful for example for automatically
directing callers to human operators that speak appropriate languages.

16.8 Summary

This chapter introduced the fundamental algorithms of automatic speech recognition
(ASR) and text-to-speech (TTS).

• The task of speech recognition (or speech-to-text) is to map acoustic wave-
forms to sequences of graphemes.

• The input to a speech recognizer is a series of acoustic waves. that are sam-
pled, quantized, and converted to a spectral representation like the log mel
spectrum.

• Two common paradigms for speech recognition are the encoder-decoder with
attention model, and models based on the CTC loss function. Attention-
based models have higher accuracies, but models based on CTC more easily
adapt to streaming: outputting graphemes online instead of waiting until the
acoustic input is complete.

• ASR is evaluated using the Word Error Rate; the edit distance between the
hypothesis and the gold transcription.

• TTS systems are also based on the encoder-decoder architecture. The en-
coder maps letters to an encoding, which is consumed by the decoder which
generates mel spectrogram output. A neural vocoder then reads the spectro-
gram and generates waveforms.

• TTS systems require a first pass of text normalization to deal with numbers
and abbreviations and other non-standard words.

• TTS is evaluated by playing a sentence to human listeners and having them
give a mean opinion score (MOS) or by doing AB tests.

Bibliographical and Historical Notes
ASR A number of speech recognition systems were developed by the late 1940s
and early 1950s. An early Bell Labs system could recognize any of the 10 digits
from a single speaker (Davis et al., 1952). This system had 10 speaker-dependent
stored patterns, one for each digit, each of which roughly represented the first two
vowel formants in the digit. They achieved 97%–99% accuracy by choosing the pat-
tern that had the highest relative correlation coefficient with the input. Fry (1959)
and Denes (1959) built a phoneme recognizer at University College, London, that
recognized four vowels and nine consonants based on a similar pattern-recognition
principle. Fry and Denes’s system was the first to use phoneme transition probabili-
ties to constrain the recognizer.
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The late 1960s and early 1970s produced a number of important paradigm shifts.
First were a number of feature-extraction algorithms, including the efficient fast
Fourier transform (FFT) (Cooley and Tukey, 1965), the application of cepstral pro-
cessing to speech (Oppenheim et al., 1968), and the development of LPC for speech
coding (Atal and Hanauer, 1971). Second were a number of ways of handling warp-
ing; stretching or shrinking the input signal to handle differences in speaking ratewarping

and segment length when matching against stored patterns. The natural algorithm for
solving this problem was dynamic programming, and, as we saw in Appendix A, the
algorithm was reinvented multiple times to address this problem. The first applica-
tion to speech processing was by Vintsyuk (1968), although his result was not picked
up by other researchers, and was reinvented by Velichko and Zagoruyko (1970) and
Sakoe and Chiba (1971) (and 1984). Soon afterward, Itakura (1975) combined this
dynamic programming idea with the LPC coefficients that had previously been used
only for speech coding. The resulting system extracted LPC features from incoming
words and used dynamic programming to match them against stored LPC templates.
The non-probabilistic use of dynamic programming to match a template against in-
coming speech is called dynamic time warping.dynamic time

warping
The third innovation of this period was the rise of the HMM. Hidden Markov

models seem to have been applied to speech independently at two laboratories around
1972. One application arose from the work of statisticians, in particular Baum and
colleagues at the Institute for Defense Analyses in Princeton who applied HMMs
to various prediction problems (Baum and Petrie 1966, Baum and Eagon 1967).
James Baker learned of this work and applied the algorithm to speech processing
(Baker, 1975) during his graduate work at CMU. Independently, Frederick Jelinek
and collaborators (drawing from their research in information-theoretical models
influenced by the work of Shannon (1948)) applied HMMs to speech at the IBM
Thomas J. Watson Research Center (Jelinek et al., 1975). One early difference was
the decoding algorithm; Baker’s DRAGON system used Viterbi (dynamic program-
ming) decoding, while the IBM system applied Jelinek’s stack decoding algorithm
(Jelinek, 1969). Baker then joined the IBM group for a brief time before founding
the speech-recognition company Dragon Systems.

The use of the HMM, with Gaussian Mixture Models (GMMs) as the phonetic
component, slowly spread through the speech community, becoming the dominant
paradigm by the 1990s. One cause was encouragement by ARPA, the Advanced
Research Projects Agency of the U.S. Department of Defense. ARPA started a
five-year program in 1971 to build 1000-word, constrained grammar, few speaker
speech understanding (Klatt, 1977), and funded four competing systems of which
Carnegie-Mellon University’s Harpy system (Lowerre, 1976), which used a simpli-
fied version of Baker’s HMM-based DRAGON system was the best of the tested sys-
tems. ARPA (and then DARPA) funded a number of new speech research programs,
beginning with 1000-word speaker-independent read-speech tasks like “Resource
Management” (Price et al., 1988), recognition of sentences read from the Wall Street
Journal (WSJ), Broadcast News domain (LDC 1998, Graff 1997) (transcription of
actual news broadcasts, including quite difficult passages such as on-the-street inter-
views) and the Switchboard, CallHome, CallFriend, and Fisher domains (Godfrey
et al. 1992, Cieri et al. 2004) (natural telephone conversations between friends or
strangers). Each of the ARPA tasks involved an approximately annual bakeoff atbakeoff

which systems were evaluated against each other. The ARPA competitions resulted
in wide-scale borrowing of techniques among labs since it was easy to see which
ideas reduced errors the previous year, and the competitions were probably an im-
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portant factor in the eventual spread of the HMM paradigm.
By around 1990 neural alternatives to the HMM/GMM architecture for ASR

arose, based on a number of earlier experiments with neural networks for phoneme
recognition and other speech tasks. Architectures included the time-delay neural
network (TDNN)—the first use of convolutional networks for speech— (Waibel
et al. 1989, Lang et al. 1990), RNNs (Robinson and Fallside, 1991), and the hybridhybrid

HMM/MLP architecture in which a feedforward neural network is trained as a pho-
netic classifier whose outputs are used as probability estimates for an HMM-based
architecture (Morgan and Bourlard 1990, Bourlard and Morgan 1994, Morgan and
Bourlard 1995).

While the hybrid systems showed performance close to the standard HMM/GMM
models, the problem was speed: large hybrid models were too slow to train on the
CPUs of that era. For example, the largest hybrid system, a feedforward network,
was limited to a hidden layer of 4000 units, producing probabilities over only a few
dozen monophones. Yet training this model still required the research group to de-
sign special hardware boards to do vector processing (Morgan and Bourlard, 1995).
A later analytic study showed the performance of such simple feedforward MLPs
for ASR increases sharply with more than 1 hidden layer, even controlling for the
total number of parameters (Maas et al., 2017). But the computational resources of
the time were insufficient for more layers.

Over the next two decades a combination of Moore’s law and the rise of GPUs
allowed deep neural networks with many layers. Performance was getting close to
traditional systems on smaller tasks like TIMIT phone recognition by 2009 (Mo-
hamed et al., 2009), and by 2012, the performance of hybrid systems had surpassed
traditional HMM/GMM systems (Jaitly et al. 2012, Dahl et al. 2012, inter alia).
Originally it seemed that unsupervised pretraining of the networks using a tech-
nique like deep belief networks was important, but by 2013, it was clear that for
hybrid HMM/GMM feedforward networks, all that mattered was to use a lot of data
and enough layers, although a few other components did improve performance: us-
ing log mel features instead of MFCCs, using dropout, and using rectified linear
units (Deng et al. 2013, Maas et al. 2013, Dahl et al. 2013).

Meanwhile early work had proposed the CTC loss function by 2006 (Graves
et al., 2006), and by 2012 the RNN-Transducer was defined and applied to phone
recognition (Graves 2012, Graves et al. 2013), and then to end-to-end speech recog-
nition rescoring (Graves and Jaitly, 2014), and then recognition (Maas et al., 2015),
with advances such as specialized beam search (Hannun et al., 2014). (Our de-
scription of CTC in the chapter draws on Hannun (2017), which we encourage the
interested reader to follow).

The encoder-decoder architecture was applied to speech at about the same time
by two different groups, in the Listen Attend and Spell system of Chan et al. (2016)
and the attention-based encoder decoder architecture of Chorowski et al. (2014)
and Bahdanau et al. (2016). By 2018 Transformers were included in this encoder-
decoder architecture. Karita et al. (2019) is a nice comparison of RNNs vs Trans-
formers in encoder-architectures for ASR, TTS, and speech-to-speech translation.

Popular toolkits for speech processing include Kaldi (Povey et al., 2011) andKaldi

ESPnet (Watanabe et al. 2018, Hayashi et al. 2020).ESPnet

TTS As we noted at the beginning of the chapter, speech synthesis is one of the
earliest fields of speech and language processing. The 18th century saw a number
of physical models of the articulation process, including the von Kempelen model
mentioned above, as well as the 1773 vowel model of Kratzenstein in Copenhagen
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using organ pipes.
The early 1950s saw the development of three early paradigms of waveform

synthesis: formant synthesis, articulatory synthesis, and concatenative synthesis.
Modern encoder-decoder systems are distant descendants of formant synthesiz-

ers. Formant synthesizers originally were inspired by attempts to mimic human
speech by generating artificial spectrograms. The Haskins Laboratories Pattern
Playback Machine generated a sound wave by painting spectrogram patterns on a
moving transparent belt and using reflectance to filter the harmonics of a wave-
form (Cooper et al., 1951); other very early formant synthesizers include those of
Lawrence (1953) and Fant (1951). Perhaps the most well-known of the formant
synthesizers were the Klatt formant synthesizer and its successor systems, includ-
ing the MITalk system (Allen et al., 1987) and the Klattalk software used in Digital
Equipment Corporation’s DECtalk (Klatt, 1982). See Klatt (1975) for details.

A second early paradigm, concatenative synthesis, seems to have been first pro-
posed by Harris (1953) at Bell Laboratories; he literally spliced together pieces of
magnetic tape corresponding to phones. Soon afterwards, Peterson et al. (1958) pro-
posed a theoretical model based on diphones, including a database with multiple
copies of each diphone with differing prosody, each labeled with prosodic features
including F0, stress, and duration, and the use of join costs based on F0 and formant
distance between neighboring units. But such diphone synthesis models were not
actually implemented until decades later (Dixon and Maxey 1968, Olive 1977). The
1980s and 1990s saw the invention of unit selection synthesis, based on larger units
of non-uniform length and the use of a target cost, (Sagisaka 1988, Sagisaka et al.
1992, Hunt and Black 1996, Black and Taylor 1994, Syrdal et al. 2000).

A third paradigm, articulatory synthesizers attempt to synthesize speech by
modeling the physics of the vocal tract as an open tube. Representative models
include Stevens et al. (1953), Flanagan et al. (1975), and Fant (1986). See Klatt
(1975) and Flanagan (1972) for more details.

Most early TTS systems used phonemes as input; development of the text anal-
ysis components of TTS came somewhat later, drawing on NLP. Indeed the first
true text-to-speech system seems to have been the system of Umeda and Teranishi
(Umeda et al. 1968, Teranishi and Umeda 1968, Umeda 1976), which included a
parser that assigned prosodic boundaries, as well as accent and stress.

Exercises
16.1 Analyze each of the errors in the incorrectly recognized transcription of “um

the phone is I left the. . . ” on page 16. For each one, give your best guess as
to whether you think it is caused by a problem in signal processing, pronun-
ciation modeling, lexicon size, language model, or pruning in the decoding
search.
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