
Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2024. All

rights reserved. Draft of January 12, 2025.

CHAPTER

18 Context-Free Grammars and
Constituency Parsing

Because the Night by Bruce Springsteen and Patti Smith
The Fire Next Time by James Baldwin
If on a winter’s night a traveler by Italo Calvino
Love Actually by Richard Curtis
Suddenly Last Summer by Tennessee Williams
A Scanner Darkly by Philip K. Dick

Six titles that are not constituents, from Geoffrey K. Pullum on
Language Log (who was pointing out their incredible rarity).

One morning I shot an elephant in my pajamas.
How he got into my pajamas I don’t know.

Groucho Marx, Animal Crackers, 1930

The study of grammar has an ancient pedigree. The grammar of Sanskrit was
described by the Indian grammarian Pān. ini sometime between the 7th and 4th cen-
turies BCE, in his famous treatise the As.t.ādhyāyı̄ (‘8 books’). And our word syntaxsyntax

comes from the Greek sýntaxis, meaning “setting out together or arrangement”, and
refers to the way words are arranged together. We have seen syntactic notions in pre-
vious chapters like the use of part-of-speech categories (Chapter 17). In this chapter
and the next one we introduce formal models for capturing more sophisticated no-
tions of grammatical structure and algorithms for parsing these structures.

Our focus in this chapter is context-free grammars and the CKY algorithm
for parsing them. Context-free grammars are the backbone of many formal mod-
els of the syntax of natural language (and, for that matter, of computer languages).
Syntactic parsing is the task of assigning a syntactic structure to a sentence. Parse
trees (whether for context-free grammars or for the dependency or CCG formalisms
we introduce in following chapters) can be used in applications such as grammar
checking: sentence that cannot be parsed may have grammatical errors (or at least
be hard to read). Parse trees can be an intermediate stage of representation for for-
mal semantic analysis. And parsers and the grammatical structure they assign a
sentence are a useful text analysis tool for text data science applications that require
modeling the relationship of elements in sentences.

In this chapter we introduce context-free grammars, give a small sample gram-
mar of English, introduce more formal definitions of context-free grammars and
grammar normal form, and talk about treebanks: corpora that have been anno-
tated with syntactic structure. We then discuss parse ambiguity and the problems
it presents, and turn to parsing itself, giving the famous Cocke-Kasami-Younger
(CKY) algorithm (Kasami 1965, Younger 1967), the standard dynamic program-
ming approach to syntactic parsing. The CKY algorithm returns an efficient repre-
sentation of the set of parse trees for a sentence, but doesn’t tell us which parse tree
is the right one. For that, we need to augment CKY with scores for each possible
constituent. We’ll see how to do this with neural span-based parsers. Finally, we’ll
introduce the standard set of metrics for evaluating parser accuracy.

2 CHAPTER 18 • CONTEXT-FREE GRAMMARS AND CONSTITUENCY PARSING

18.1 Constituency

Syntactic constituency is the idea that groups of words can behave as single units,
or constituents. Part of developing a grammar involves building an inventory of the
constituents in the language. How do words group together in English? Consider
the noun phrase, a sequence of words surrounding at least one noun. Here are somenoun phrase

examples of noun phrases (thanks to Damon Runyon):

Harry the Horse a high-class spot such as Mindy’s
the Broadway coppers the reason he comes into the Hot Box
they three parties from Brooklyn

What evidence do we have that these words group together (or “form constituents”)?
One piece of evidence is that they can all appear in similar syntactic environments,
for example, before a verb.

three parties from Brooklyn arrive. . .
a high-class spot such as Mindy’s attracts. . .
the Broadway coppers love. . .
they sit

But while the whole noun phrase can occur before a verb, this is not true of each
of the individual words that make up a noun phrase. The following are not grammat-
ical sentences of English (recall that we use an asterisk (*) to mark fragments that
are not grammatical English sentences):

*from arrive. . . *as attracts. . .
*the is. . . *spot sat. . .

Thus, to correctly describe facts about the ordering of these words in English, we
must be able to say things like “Noun Phrases can occur before verbs”. Let’s now
see how to do this in a more formal way!

18.2 Context-Free Grammars

A widely used formal system for modeling constituent structure in natural lan-
guage is the context-free grammar, or CFG. Context-free grammars are also calledCFG

phrase-structure grammars, and the formalism is equivalent to Backus-Naur form,
or BNF. The idea of basing a grammar on constituent structure dates back to the psy-
chologist Wilhelm Wundt (1900) but was not formalized until Chomsky (1956) and,
independently, Backus (1959).

A context-free grammar consists of a set of rules or productions, each of whichrules

expresses the ways that symbols of the language can be grouped and ordered to-
gether, and a lexicon of words and symbols. For example, the following productionslexicon

express that an NP (or noun phrase) can be composed of either a ProperNoun orNP

a determiner (Det) followed by a Nominal; a Nominal in turn can consist of one or

18.2 • CONTEXT-FREE GRAMMARS 3

more Nouns.1

NP → Det Nominal
NP → ProperNoun

Nominal → Noun | Nominal Noun

Context-free rules can be hierarchically embedded, so we can combine the previous
rules with others, like the following, that express facts about the lexicon:

Det → a
Det → the

Noun → flight

The symbols that are used in a CFG are divided into two classes. The symbols
that correspond to words in the language (“the”, “nightclub”) are called terminalterminal

symbols; the lexicon is the set of rules that introduce these terminal symbols. The
symbols that express abstractions over these terminals are called non-terminals. Innon-terminal

each context-free rule, the item to the right of the arrow (→) is an ordered list of one
or more terminals and non-terminals; to the left of the arrow is a single non-terminal
symbol expressing some cluster or generalization. The non-terminal associated with
each word in the lexicon is its lexical category, or part of speech.

A CFG can be thought of in two ways: as a device for generating sentences
and as a device for assigning a structure to a given sentence. Viewing a CFG as a
generator, we can read the→ arrow as “rewrite the symbol on the left with the string
of symbols on the right”.

So starting from the symbol: NP
we can use our first rule to rewrite NP as: Det Nominal
and then rewrite Nominal as: Noun
and finally rewrite these parts-of-speech as: a flight

We say the string a flight can be derived from the non-terminal NP. Thus, a CFG
can be used to generate a set of strings. This sequence of rule expansions is called a
derivation of the string of words. It is common to represent a derivation by a parsederivation

tree (commonly shown inverted with the root at the top). Figure 18.1 shows the treeparse tree

representation of this derivation.

NP

Nom

Noun

flight

Det

a

Figure 18.1 A parse tree for “a flight”.

In the parse tree shown in Fig. 18.1, we can say that the node NP dominatesdominates

all the nodes in the tree (Det, Nom, Noun, a, flight). We can say further that it
immediately dominates the nodes Det and Nom.

The formal language defined by a CFG is the set of strings that are derivable
from the designated start symbol. Each grammar must have one designated startstart symbol

1 When talking about these rules we can pronounce the rightarrow → as “goes to”, and so we might
read the first rule above as “NP goes to Det Nominal”.

4 CHAPTER 18 • CONTEXT-FREE GRAMMARS AND CONSTITUENCY PARSING

symbol, which is often called S. Since context-free grammars are often used to define
sentences, S is usually interpreted as the “sentence” node, and the set of strings that
are derivable from S is the set of sentences in some simplified version of English.

Let’s add a few additional rules to our inventory. The following rule expresses
the fact that a sentence can consist of a noun phrase followed by a verb phrase:verb phrase

S → NP VP I prefer a morning flight

A verb phrase in English consists of a verb followed by assorted other things;
for example, one kind of verb phrase consists of a verb followed by a noun phrase:

VP → Verb NP prefer a morning flight

Or the verb may be followed by a noun phrase and a prepositional phrase:

VP → Verb NP PP leave Boston in the morning

Or the verb phrase may have a verb followed by a prepositional phrase alone:

VP → Verb PP leaving on Thursday

A prepositional phrase generally has a preposition followed by a noun phrase.
For example, a common type of prepositional phrase in the ATIS corpus is used to
indicate location or direction:

PP → Preposition NP from Los Angeles

The NP inside a PP need not be a location; PPs are often used with times and
dates, and with other nouns as well; they can be arbitrarily complex. Here are ten
examples from the ATIS corpus:

to Seattle on these flights
in Minneapolis about the ground transportation in Chicago
on Wednesday of the round trip flight on United Airlines
in the evening of the AP fifty seven flight
on the ninth of July with a stopover in Nashville

Figure 18.2 gives a sample lexicon, and Fig. 18.3 summarizes the grammar rules
we’ve seen so far, which we’ll call L0. Note that we can use the or-symbol | to
indicate that a non-terminal has alternate possible expansions.

Noun→ flights | flight | breeze | trip | morning
Verb→ is | prefer | like | need | want | fly | do

Adjective→ cheapest | non-stop | first | latest
| other | direct

Pronoun→ me | I | you | it
Proper-Noun→ Alaska | Baltimore | Los Angeles

| Chicago | United | American
Determiner→ the | a | an | this | these | that
Preposition→ from | to | on | near | in

Conjunction→ and | or | but
Figure 18.2 The lexicon for L0.

We can use this grammar to generate sentences of this “ATIS-language”. We
start with S, expand it to NP VP, then choose a random expansion of NP (let’s say, to

18.2 • CONTEXT-FREE GRAMMARS 5

Grammar Rules Examples
S → NP VP I + want a morning flight

NP → Pronoun I
| Proper-Noun Los Angeles
| Det Nominal a + flight

Nominal → Nominal Noun morning + flight
| Noun flights

VP → Verb do
| Verb NP want + a flight
| Verb NP PP leave + Boston + in the morning
| Verb PP leaving + on Thursday

PP → Preposition NP from + Los Angeles
Figure 18.3 The grammar for L0, with example phrases for each rule.

S

VP

NP

Nom

Noun

flight

Nom

Noun

morning

Det

a

Verb

prefer

NP

Pro

I

Figure 18.4 The parse tree for “I prefer a morning flight” according to grammar L0.

I), and a random expansion of VP (let’s say, to Verb NP), and so on until we generate
the string I prefer a morning flight. Figure 18.4 shows a parse tree that represents a
complete derivation of I prefer a morning flight.

We can also represent a parse tree in a more compact format called bracketed
notation; here is the bracketed representation of the parse tree of Fig. 18.4:bracketed

notation

(18.1) [S [NP [Pro I]] [VP [V prefer] [NP [Det a] [Nom [N morning] [Nom [N flight]]]]]]

A CFG like that of L0 defines a formal language. Sentences (strings of words)
that can be derived by a grammar are in the formal language defined by that gram-
mar, and are called grammatical sentences. Sentences that cannot be derived bygrammatical

a given formal grammar are not in the language defined by that grammar and are
referred to as ungrammatical. This hard line between “in” and “out” characterizesungrammatical

all formal languages but is only a very simplified model of how natural languages
really work. This is because determining whether a given sentence is part of a given
natural language (say, English) often depends on the context. In linguistics, the use
of formal languages to model natural languages is called generative grammar sincegenerative

grammar
the language is defined by the set of possible sentences “generated” by the grammar.
(Note that this is a different sense of the word ‘generate’ than when we talk about

6 CHAPTER 18 • CONTEXT-FREE GRAMMARS AND CONSTITUENCY PARSING

language models generating text.)

18.2.1 Formal Definition of Context-Free Grammar
We conclude this section with a quick, formal description of a context-free gram-
mar and the language it generates. A context-free grammar G is defined by four
parameters: N, Σ, R, S (technically it is a “4-tuple”).

N a set of non-terminal symbols (or variables)
Σ a set of terminal symbols (disjoint from N)
R a set of rules or productions, each of the form A→ β ,

where A is a non-terminal,
β is a string of symbols from the infinite set of strings (Σ∪N)∗

S a designated start symbol and a member of N

For the remainder of the book we adhere to the following conventions when dis-
cussing the formal properties of context-free grammars (as opposed to explaining
particular facts about English or other languages).

Capital letters like A, B, and S Non-terminals
S The start symbol
Lower-case Greek letters like α , β , and γ Strings drawn from (Σ∪N)∗

Lower-case Roman letters like u, v, and w Strings of terminals

A language is defined through the concept of derivation. One string derives an-
other one if it can be rewritten as the second one by some series of rule applications.
More formally, following Hopcroft and Ullman (1979),

if A→ β is a production of R and α and γ are any strings in the set
(Σ∪N)∗, then we say that αAγ directly derives αβγ , or αAγ ⇒ αβγ .directly derives

Derivation is then a generalization of direct derivation:

Let α1, α2, . . . , αm be strings in (Σ∪N)∗,m≥ 1, such that

α1⇒ α2,α2⇒ α3, . . . ,αm−1⇒ αm

We say that α1 derives αm, or α1
∗⇒ αm.derives

We can then formally define the language LG generated by a grammar G as the
set of strings composed of terminal symbols that can be derived from the designated
start symbol S.

LG = {w|w is in Σ
∗ and S ∗⇒ w}

The problem of mapping from a string of words to its parse tree is called syn-
tactic parsing, as we’ll see in Section 18.6.syntactic

parsing

18.3 Treebanks

A corpus in which every sentence is annotated with a parse tree is called a treebank.treebank

18.3 • TREEBANKS 7

Treebanks play an important role in parsing as well as in linguistic investigations of
syntactic phenomena.

Treebanks are generally made by running a parser over each sentence and then
having the resulting parse hand-corrected by human linguists. Figure 18.5 shows
sentences from the Penn Treebank project, which includes various treebanks inPenn Treebank

English, Arabic, and Chinese. The Penn Treebank part-of-speech tagset was defined
in Chapter 17, but we’ll see minor formatting differences across treebanks. The use
of LISP-style parenthesized notation for trees is extremely common and resembles
the bracketed notation we saw earlier in (18.1). For those who are not familiar with
it we show a standard node-and-line tree representation in Fig. 18.6.

((S

(NP-SBJ (DT That)

(JJ cold) (, ,)

(JJ empty) (NN sky))

(VP (VBD was)

(ADJP-PRD (JJ full)

(PP (IN of)

(NP (NN fire)

(CC and)

(NN light)))))

(. .)))

((S

(NP-SBJ The/DT flight/NN)

(VP should/MD

(VP arrive/VB

(PP-TMP at/IN

(NP eleven/CD a.m/RB))

(NP-TMP tomorrow/NN)))))

(a) (b)

Figure 18.5 Parses from the LDC Treebank3 for (a) Brown and (b) ATIS sentences.

S

.

.

VP

ADJP-PRD

PP

NP

NN

light

CC

and

NN

fire

IN

of

JJ

full

VBD

was

NP-SBJ

NN

sky

JJ

empty

,

,

JJ

cold

DT

That

Figure 18.6 The tree corresponding to the Brown corpus sentence in the previous figure.

The sentences in a treebank implicitly constitute a grammar of the language. For
example, from the parsed sentences in Fig. 18.5 we can extract the CFG rules shown
in Fig. 18.7 (with rule suffixes (-SBJ) stripped for simplicity). The grammar used
to parse the Penn Treebank is very flat, resulting in very many rules. For example,

8 CHAPTER 18 • CONTEXT-FREE GRAMMARS AND CONSTITUENCY PARSING

Grammar Lexicon
S→ NP VP . DT→ the | that
S→ NP VP JJ→ cold | empty | full
NP→ CD RB NN→ sky | fire | light | flight | tomorrow
NP→ DT NN CC→ and
NP→ NN CC NN IN→ of | at
NP→ DT JJ , JJ NN CD→ eleven
NP→ NN RB→ a.m.
VP→ MD VP VB→ arrive
VP→ VBD ADJP VBD→ was | said
VP→ MD VP MD→ should | would
VP→ VB PP NP
ADJP→ JJ PP
PP→ IN NP

Figure 18.7 CFG grammar rules and lexicon from the treebank sentences in Fig. 18.5.

among the approximately 4,500 different rules for expanding VPs are separate rules
for PP sequences of any length and every possible arrangement of verb arguments:

VP → VBD PP
VP → VBD PP PP
VP → VBD PP PP PP
VP → VBD PP PP PP PP
VP → VB ADVP PP
VP → VB PP ADVP
VP → ADVP VB PP

18.4 Grammar Equivalence and Normal Form

A formal language is defined as a (possibly infinite) set of strings of words. This sug-
gests that we could ask if two grammars are equivalent by asking if they generate the
same set of strings. In fact, it is possible to have two distinct context-free grammars
generate the same language. We say that two grammars are strongly equivalent ifstrongly

equivalent
they generate the same set of strings and if they assign the same phrase structure
to each sentence (allowing merely for renaming of the non-terminal symbols). Two
grammars are weakly equivalent if they generate the same set of strings but do notweakly

equivalent
assign the same phrase structure to each sentence.

It is sometimes useful to have a normal form for grammars, in which each ofnormal form

the productions takes a particular form. For example, a context-free grammar is in
Chomsky normal form (CNF) (Chomsky, 1963) if it is ε-free and if in additionChomsky

normal form
each production is either of the form A→ B C or A→ a. That is, the right-hand side
of each rule either has two non-terminal symbols or one terminal symbol. Chomsky
normal form grammars are binary branching, that is they have binary trees (downbinary

branching
to the prelexical nodes). We make use of this binary branching property in the CKY
parsing algorithm in Section 18.6.

Any context-free grammar can be converted into a weakly equivalent Chomsky
normal form grammar. For example, a rule of the form

A → B C D

can be converted into the following two CNF rules (Exercise 18.1 asks the reader to

18.5 • AMBIGUITY 9

Grammar Lexicon
S → NP VP Det → that | this | the | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | United
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP
Figure 18.8 The L1 miniature English grammar and lexicon.

formulate the complete algorithm):

A → B X

X → C D

Sometimes using binary branching can actually produce smaller grammars. For
example, the sentences that might be characterized as

VP -> VBD NP PP*

are represented in the Penn Treebank by this series of rules:

VP → VBD NP PP

VP → VBD NP PP PP

VP → VBD NP PP PP PP

VP → VBD NP PP PP PP PP

...

but could also be generated by the following two-rule grammar:

VP → VBD NP PP

VP → VP PP

The generation of a symbol A with a potentially infinite sequence of symbols B with
a rule of the form A → A B is known as Chomsky-adjunction.Chomsky-

adjunction

18.5 Ambiguity

Ambiguity is the most serious problem faced by syntactic parsers. Chapter 17 intro-
duced the notions of part-of-speech ambiguity and part-of-speech disambigua-
tion. Here, we introduce a new kind of ambiguity, called structural ambiguity,structural

ambiguity
illustrated with a new toy grammar L1, shown in Figure 18.8, which adds a few
rules to the L0 grammar.

Structural ambiguity occurs when the grammar can assign more than one parse
to a sentence. Groucho Marx’s well-known line as Captain Spaulding in Animal

10 CHAPTER 18 • CONTEXT-FREE GRAMMARS AND CONSTITUENCY PARSING

S

VP

NP

Nominal

PP

in my pajamas

Nominal

Noun

elephant

Det

an

Verb

shot

NP

Pronoun

I

S

VP

PP

in my pajamas

VP

NP

Nominal

Noun

elephant

Det

an

Verb

shot

NP

Pronoun

I

Figure 18.9 Two parse trees for an ambiguous sentence. The parse on the left corresponds to the humorous
reading in which the elephant is in the pajamas, the parse on the right corresponds to the reading in which
Captain Spaulding did the shooting in his pajamas.

Crackers is ambiguous because the phrase in my pajamas can be part of the NP
headed by elephant or a part of the verb phrase headed by shot. Figure 18.9 illus-
trates these two analyses of Marx’s line using rules from L1.

Structural ambiguity, appropriately enough, comes in many forms. Two common
kinds of ambiguity are attachment ambiguity and coordination ambiguity. A
sentence has an attachment ambiguity if a particular constituent can be attached toattachment

ambiguity
the parse tree at more than one place. The Groucho Marx sentence is an example
of PP-attachment ambiguity: the preposition phrase can be attached either as partPP-attachment

ambiguity
of the NP or as part of the VP. Various kinds of adverbial phrases are also subject
to this kind of ambiguity. For instance, in the following example the gerundive-VP
flying to Paris can be part of a gerundive sentence whose subject is the Eiffel Tower
or it can be an adjunct modifying the VP headed by saw:

(18.2) We saw the Eiffel Tower flying to Paris.

In coordination ambiguity phrases can be conjoined by a conjunction like and.coordination
ambiguity

For example, the phrase old men and women can be bracketed as [old [men and
women]], referring to old men and old women, or as [old men] and [women], in
which case it is only the men who are old. These ambiguities combine in complex
ways in real sentences, like the following news sentence from the Brown corpus:

(18.3) President Kennedy today pushed aside other White House business to
devote all his time and attention to working on the Berlin crisis address he
will deliver tomorrow night to the American people over nationwide
television and radio.

This sentence has a number of ambiguities, although since they are semantically
unreasonable, it requires a careful reading to see them. The last noun phrase could be
parsed [nationwide [television and radio]] or [[nationwide television] and radio].
The direct object of pushed aside should be other White House business but could
also be the bizarre phrase [other White House business to devote all his time and
attention to working] (i.e., a structure like Kennedy affirmed [his intention to propose
a new budget to address the deficit]). Then the phrase on the Berlin crisis address he

18.6 • CKY PARSING: A DYNAMIC PROGRAMMING APPROACH 11

will deliver tomorrow night to the American people could be an adjunct modifying
the verb pushed. A PP like over nationwide television and radio could be attached
to any of the higher VPs or NPs (e.g., it could modify people or night).

The fact that there are many grammatically correct but semantically unreason-
able parses for naturally occurring sentences is an irksome problem that affects all
parsers. Fortunately, the CKY algorithm below is designed to efficiently handle
structural ambiguities. And as we’ll see in the following section, we can augment
CKY with neural methods to choose a single correct parse by syntactic disambigua-
tion.syntactic

disambiguation

18.6 CKY Parsing: A Dynamic Programming Approach

Dynamic programming provides a powerful framework for addressing the prob-
lems caused by ambiguity in grammars. Recall that a dynamic programming ap-
proach systematically fills in a table of solutions to subproblems. The complete
table has the solution to all the subproblems needed to solve the problem as a whole.
In the case of syntactic parsing, these subproblems represent parse trees for all the
constituents detected in the input.

The dynamic programming advantage arises from the context-free nature of our
grammar rules—once a constituent has been discovered in a segment of the input we
can record its presence and make it available for use in any subsequent derivation
that might require it. This provides both time and storage efficiencies since subtrees
can be looked up in a table, not reanalyzed. This section presents the Cocke-Kasami-
Younger (CKY) algorithm, the most widely used dynamic-programming based ap-
proach to parsing. Chart parsing (Kaplan 1973, Kay 1982) is a related approach,
and dynamic programming methods are often referred to as chart parsing methods.chart parsing

18.6.1 Conversion to Chomsky Normal Form
The CKY algorithm requires grammars to first be in Chomsky Normal Form (CNF).
Recall from Section 18.4 that grammars in CNF are restricted to rules of the form
A → B C or A → w. That is, the right-hand side of each rule must expand either to
two non-terminals or to a single terminal. Restricting a grammar to CNF does not
lead to any loss in expressiveness, since any context-free grammar can be converted
into a corresponding CNF grammar that accepts exactly the same set of strings as
the original grammar.

Let’s start with the process of converting a generic CFG into one represented in
CNF. Assuming we’re dealing with an ε-free grammar, there are three situations we
need to address in any generic grammar: rules that mix terminals with non-terminals
on the right-hand side, rules that have a single non-terminal on the right-hand side,
and rules in which the length of the right-hand side is greater than 2.

The remedy for rules that mix terminals and non-terminals is to simply introduce
a new dummy non-terminal that covers only the original terminal. For example, a
rule for an infinitive verb phrase such as INF-VP → to VP would be replaced by the
two rules INF-VP → TO VP and TO → to.

Rules with a single non-terminal on the right are called unit productions. WeUnit
productions

can eliminate unit productions by rewriting the right-hand side of the original rules
with the right-hand side of all the non-unit production rules that they ultimately lead
to. More formally, if A ∗⇒ B by a chain of one or more unit productions and B→ γ

12 CHAPTER 18 • CONTEXT-FREE GRAMMARS AND CONSTITUENCY PARSING

is a non-unit production in our grammar, then we add A→ γ for each such rule in
the grammar and discard all the intervening unit productions. As we demonstrate
with our toy grammar, this can lead to a substantial flattening of the grammar and a
consequent promotion of terminals to fairly high levels in the resulting trees.

Rules with right-hand sides longer than 2 are normalized through the introduc-
tion of new non-terminals that spread the longer sequences over several new rules.
Formally, if we have a rule like

A → B C γ

we replace the leftmost pair of non-terminals with a new non-terminal and introduce
a new production, resulting in the following new rules:

A → X1 γ

X1 → B C

In the case of longer right-hand sides, we simply iterate this process until the of-
fending rule has been replaced by rules of length 2. The choice of replacing the
leftmost pair of non-terminals is purely arbitrary; any systematic scheme that results
in binary rules would suffice.

In our current grammar, the rule S → Aux NP VP would be replaced by the two
rules S → X1 VP and X1 → Aux NP.

The entire conversion process can be summarized as follows:

1. Copy all conforming rules to the new grammar unchanged.
2. Convert terminals within rules to dummy non-terminals.
3. Convert unit productions.
4. Make all rules binary and add them to new grammar.

Figure 18.10 shows the results of applying this entire conversion procedure to
the L1 grammar introduced earlier on page 9. Note that this figure doesn’t show
the original lexical rules; since these original lexical rules are already in CNF, they
all carry over unchanged to the new grammar. Figure 18.10 does, however, show
the various places where the process of eliminating unit productions has, in effect,
created new lexical rules. For example, all the original verbs have been promoted to
both VPs and to Ss in the converted grammar.

18.6.2 CKY Recognition
With our grammar now in CNF, each non-terminal node above the part-of-speech
level in a parse tree will have exactly two daughters. A two-dimensional matrix can
be used to encode the structure of an entire tree. For a sentence of length n, we will
work with the upper-triangular portion of an (n+1)× (n+1) matrix. Each cell [i, j]
in this matrix contains the set of non-terminals that represent all the constituents that
span positions i through j of the input. Since our indexing scheme begins with 0, it’s
natural to think of the indexes as pointing at the gaps between the input words (as in
0 Book 1 that 2 flight 3). These gaps are often called fenceposts, on the metaphor offenceposts

the posts between segments of fencing. It follows then that the cell that represents
the entire input resides in position [0,n] in the matrix.

Since each non-terminal entry in our table has two daughters in the parse, it fol-
lows that for each constituent represented by an entry [i, j], there must be a position
in the input, k, where it can be split into two parts such that i < k < j. Given such

18.6 • CKY PARSING: A DYNAMIC PROGRAMMING APPROACH 13

L1 Grammar L1 in CNF
S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → United | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP
Figure 18.10 L1 Grammar and its conversion to CNF. Note that although they aren’t shown
here, all the original lexical entries from L1 carry over unchanged as well.

a position k, the first constituent [i,k] must lie to the left of entry [i, j] somewhere
along row i, and the second entry [k, j] must lie beneath it, along column j.

To make this more concrete, consider the following example with its completed
parse matrix, shown in Fig. 18.11.

(18.4) Book the flight through Houston.

The superdiagonal row in the matrix contains the parts of speech for each word in
the input. The subsequent diagonals above that superdiagonal contain constituents
that cover all the spans of increasing length in the input.

Given this setup, CKY recognition consists of filling the parse table in the right
way. To do this, we’ll proceed in a bottom-up fashion so that at the point where we
are filling any cell [i, j], the cells containing the parts that could contribute to this
entry (i.e., the cells to the left and the cells below) have already been filled. The
algorithm given in Fig. 18.12 fills the upper-triangular matrix a column at a time
working from left to right, with each column filled from bottom to top, as the right
side of Fig. 18.11 illustrates. This scheme guarantees that at each point in time we
have all the information we need (to the left, since all the columns to the left have
already been filled, and below since we’re filling bottom to top). It also mirrors on-
line processing, since filling the columns from left to right corresponds to processing
each word one at a time.

The outermost loop of the algorithm given in Fig. 18.12 iterates over the columns,
and the second loop iterates over the rows, from the bottom up. The purpose of the
innermost loop is to range over all the places where a substring spanning i to j in
the input might be split in two. As k ranges over the places where the string can be
split, the pairs of cells we consider move, in lockstep, to the right along row i and
down along column j. Figure 18.13 illustrates the general case of filling cell [i, j].

14 CHAPTER 18 • CONTEXT-FREE GRAMMARS AND CONSTITUENCY PARSING

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

S,VP,X2 S,VP,X2

Det NP NP

Nominal,
Noun

Nominal

Prep PP

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

Figure 18.11 Completed parse table for Book the flight through Houston.

function CKY-PARSE(words, grammar) returns table

for j← from 1 to LENGTH(words) do
for all {A | A → words[j] ∈ grammar}

table[j−1, j]← table[j−1, j] ∪ A
for i← from j−2 down to 0 do

for k← i+1 to j−1 do
for all {A | A → BC ∈ grammar and B ∈ table[i,k] and C ∈ table[k, j]}

table[i,j]← table[i,j] ∪ A

Figure 18.12 The CKY algorithm.

At each such split, the algorithm considers whether the contents of the two cells can
be combined in a way that is sanctioned by a rule in the grammar. If such a rule
exists, the non-terminal on its left-hand side is entered into the table.

Figure 18.14 shows how the five cells of column 5 of the table are filled after the
word Houston is read. The arrows point out the two spans that are being used to add
an entry to the table. Note that the action in cell [0,5] indicates the presence of three
alternative parses for this input, one where the PP modifies the flight, one where
it modifies the booking, and one that captures the second argument in the original
VP→ Verb NP PP rule, now captured indirectly with the VP→ X2 PP rule.

18.6.3 CKY Parsing
The algorithm given in Fig. 18.12 is a recognizer, not a parser. That is, it can tell
us whether a valid parse exists for a given sentence based on whether or not if finds
an S in cell [0,n], but it can’t provide the derivation, which is the actual job for a
parser. To turn it into a parser capable of returning all possible parses for a given
input, we can make two simple changes to the algorithm: the first change is to
augment the entries in the table so that each non-terminal is paired with pointers to
the table entries from which it was derived (more or less as shown in Fig. 18.14), the
second change is to permit multiple versions of the same non-terminal to be entered
into the table (again as shown in Fig. 18.14). With these changes, the completed
table contains all the possible parses for a given input. Returning an arbitrary single

18.6 • CKY PARSING: A DYNAMIC PROGRAMMING APPROACH 15

...

...

[0,n]

[i,i+1] [i,i+2] [i,j-2] [i,j-1]

[i+1,j]

[i+2,j]

[j-1,j]

[j-2,j]

[i,j]

...

[0,1]

[n-1, n]

Figure 18.13 All the ways to fill the [i, j]th cell in the CKY table.

parse consists of choosing an S from cell [0,n] and then recursively retrieving its
component constituents from the table. Of course, instead of returning every parse
for a sentence, we usually want just the best parse; we’ll see how to do that in the
next section.

18.6.4 CKY in Practice
Finally, we should note that while the restriction to CNF does not pose a problem
theoretically, it does pose some non-trivial problems in practice. The returned CNF
trees may not be consistent with the original grammar built by the grammar devel-
opers, and will complicate any syntax-driven approach to semantic analysis.

One approach to getting around these problems is to keep enough information
around to transform our trees back to the original grammar as a post-processing step
of the parse. This is trivial in the case of the transformation used for rules with length
greater than 2. Simply deleting the new dummy non-terminals and promoting their
daughters restores the original tree.

In the case of unit productions, it turns out to be more convenient to alter the ba-
sic CKY algorithm to handle them directly than it is to store the information needed
to recover the correct trees. Exercise 18.3 asks you to make this change. Many of
the probabilistic parsers presented in Appendix C use the CKY algorithm altered in

16 CHAPTER 18 • CONTEXT-FREE GRAMMARS AND CONSTITUENCY PARSING

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

S,VP,X2

Det NP

Nominal,
Noun

Nominal

Prep

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

S,VP,X2

Det NP NP

Nominal,
Noun

Prep PP

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

S,VP,X2

Det NP NP

Nominal,
Noun

Nominal

Prep PP

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

S,VP,X2

Det NP NP

Nominal,
Noun

Nominal

Prep PP

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

S,
VP,
X2

Det NP NP

Nominal,
Noun

Nominal

Prep PP

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

S2, VP
S3

S1,VP, X2

Figure 18.14 Filling the cells of column 5 after reading the word Houston.

18.7 • SPAN-BASED NEURAL CONSTITUENCY PARSING 17

just this manner.

18.7 Span-Based Neural Constituency Parsing

While the CKY parsing algorithm we’ve seen so far does great at enumerating all
the possible parse trees for a sentence, it has a large problem: it doesn’t tell us which
parse is the correct one! That is, it doesn’t disambiguate among the possible parses.
To solve the disambiguation problem we’ll use a simple neural extension of the
CKY algorithm. The intuition of such parsing algorithms (often called span-based
constituency parsing, or neural CKY), is to train a neural classifier to assign a
score to each constituent, and then use a modified version of CKY to combine these
constituent scores to find the best-scoring parse tree.

Here we’ll describe a version of the algorithm from Kitaev et al. (2019). This
parser learns to map a span of words to a constituent, and, like CKY, hierarchically
combines larger and larger spans to build the parse-tree bottom-up. But unlike clas-
sic CKY, this parser doesn’t use the hand-written grammar to constrain what con-
stituents can be combined, instead just relying on the learned neural representations
of spans to encode likely combinations.

18.7.1 Computing Scores for a Span
Let’s begin by considering just the constituent (we’ll call it a span) that lies betweenspan

fencepost positions i and j with non-terminal symbol label l. We’ll build a system
to assign a score s(i, j, l) to this constituent span.

ENCODER

[START] Book the flight through Houston [END]

map to subwords

map back to words

0 1 32 4 5

MLP

i=1
hj-hi

j=3

NP

Compute score for span

Represent span

CKY for computing best parse

postprocessing layers

Figure 18.15 A simplified outline of computing the span score for the span the flight with
the label NP.

Fig. 18.15 sketches the architecture. The input word tokens are embedded by

18 CHAPTER 18 • CONTEXT-FREE GRAMMARS AND CONSTITUENCY PARSING

passing them through a pretrained language model like BERT. Because BERT oper-
ates on the level of subword (wordpiece) tokens rather than words, we’ll first need to
convert the BERT outputs to word representations. One standard way of doing this
is to simply use the first subword unit as the representation for the entire word; us-
ing the last subword unit, or the sum of all the subword units are also common. The
embeddings can then be passed through some postprocessing layers; Kitaev et al.
(2019), for example, use 8 Transformer layers.

The resulting word encoder outputs yt are then used to compute a span score.
First, we must map the word encodings (indexed by word positions) to span encod-
ings (indexed by fenceposts). We do this by representing each fencepost with two
separate values; the intuition is that a span endpoint to the right of a word represents
different information than a span endpoint to the left of a word. We convert each
word output yt into a (leftward-pointing) value for spans ending at this fencepost,
←−y t , and a (rightward-pointing) value −→y t for spans beginning at this fencepost, by
splitting yt into two halves. Each span then stretches from one double-vector fence-
post to another, as in the following representation of the flight, which is span(1,3):

START0 Book the flight through
y0
−→y0
←−y1 y1

−→y1
←−y2 y2

−→y2
←−y3 y3

−→y3
←−y4 y4

−→y4
←−y5 . . .

0© 1© 2© 3© 4©

span(1,3)

A traditional way to represent a span, developed originally for RNN-based models
(Wang and Chang, 2016), but extended also to Transformers, is to take the differ-
ence between the embeddings of its start and end, i.e., representing span (i, j) by
subtracting the embedding of i from the embedding of j. Here we represent a span
by concatenating the difference of each of its fencepost components:

v(i, j) = [−→y j −−→yi ; ←−−y j+1−←−−yi+1] (18.5)

The span vector v is then passed through an MLP span classifier, with two fully-
connected layers and one ReLU activation function, whose output dimensionality is
the number of possible non-terminal labels:

s(i, j, ·) = W2 ReLU(LayerNorm(W1v(i, j))) (18.6)

The MLP then outputs a score for each possible non-terminal.

18.7.2 Integrating Span Scores into a Parse
Now we have a score for each labeled constituent span s(i, j, l). But we need a score
for an entire parse tree. Formally a tree T is represented as a set of |T | such labeled
spans, with the t th span starting at position it and ending at position jt , with label lt :

T = {(it , jt , lt) : t = 1, . . . , |T |} (18.7)

Thus once we have a score for each span, the parser can compute a score for the
whole tree s(T) simply by summing over the scores of its constituent spans:

s(T) =
∑

(i, j,l)∈T

s(i, j, l) (18.8)

18.8 • EVALUATING PARSERS 19

And we can choose the final parse tree as the tree with the maximum score:

T̂ = argmax
T

s(T) (18.9)

The simplest method to produce the most likely parse is to greedily choose the
highest scoring label for each span. This greedy method is not guaranteed to produce
a tree, since the best label for a span might not fit into a complete tree. In practice,
however, the greedy method tends to find trees; in their experiments Gaddy et al.
(2018) finds that 95% of predicted bracketings form valid trees.

Nonetheless it is more common to use a variant of the CKY algorithm to find the
full parse. The variant defined in Gaddy et al. (2018) works as follows. Let’s define
sbest(i, j) as the score of the best subtree spanning (i, j). For spans of length one, we
choose the best label:

sbest(i, i+1) = max
l

s(i, i+1, l) (18.10)

For other spans (i, j), the recursion is:

sbest(i, j) = max
l

s(i, j, l)

+ max
k

[sbest(i,k)+ sbest(k, j)] (18.11)

Note that the parser is using the max label for span (i, j) + the max labels for spans
(i,k) and (k, j) without worrying about whether those decisions make sense given a
grammar. The role of the grammar in classical parsing is to help constrain possible
combinations of constituents (NPs like to be followed by VPs). By contrast, the
neural model seems to learn these kinds of contextual constraints during its mapping
from spans to non-terminals.

For more details on span-based parsing, including the margin-based training al-
gorithm, see Stern et al. (2017), Gaddy et al. (2018), Kitaev and Klein (2018), and
Kitaev et al. (2019).

18.8 Evaluating Parsers

The standard tool for evaluating parsers that assign a single parse tree to a sentence
is the PARSEVAL metrics (Black et al., 1991). The PARSEVAL metric measuresPARSEVAL

how much the constituents in the hypothesis parse tree look like the constituents in a
hand-labeled, reference parse. PARSEVAL thus requires a human-labeled reference
(or “gold standard”) parse tree for each sentence in the test set; we generally draw
these reference parses from a treebank like the Penn Treebank.

A constituent in a hypothesis parse Ch of a sentence s is labeled correct if there
is a constituent in the reference parse Cr with the same starting point, ending point,
and non-terminal symbol. We can then measure the precision and recall just as for
tasks we’ve seen already like named entity tagging:

labeled recall: = # of correct constituents in hypothesis parse of s
of total constituents in reference parse of s

labeled precision: = # of correct constituents in hypothesis parse of s
of total constituents in hypothesis parse of s

20 CHAPTER 18 • CONTEXT-FREE GRAMMARS AND CONSTITUENCY PARSING

S(dumped)

VP(dumped)

PP(into)

NP(bin)

NN(bin)

bin

DT(a)

a

P

into

NP(sacks)

NNS(sacks)

sacks

VBD(dumped)

dumped

NP(workers)

NNS(workers)

workers

Figure 18.16 A lexicalized tree from Collins (1999).

As usual, we often report a combination of the two, F1:

F1 =
2PR

P+R
(18.12)

We additionally use a new metric, crossing brackets, for each sentence s:

cross-brackets: the number of constituents for which the reference parse has a
bracketing such as ((A B) C) but the hypothesis parse has a bracketing such
as (A (B C)).

For comparing parsers that use different grammars, the PARSEVAL metric in-
cludes a canonicalization algorithm for removing information likely to be grammar-
specific (auxiliaries, pre-infinitival “to”, etc.) and for computing a simplified score
(Black et al., 1991). The canonical implementation of the PARSEVAL metrics is
called evalb (Sekine and Collins, 1997).evalb

18.9 Heads and Head-Finding

Syntactic constituents can be associated with a lexical head; N is the head of an NP,
V is the head of a VP. This idea of a head for each constituent dates back to Bloom-
field 1914, and is central to the dependency grammars and dependency parsing we’ll
introduce in Chapter 19. Indeed, heads can be used as a way to map between con-
stituency and dependency parses. Heads are also important in probabilistic pars-
ing (Appendix C) and in constituent-based grammar formalisms like Head-Driven
Phrase Structure Grammar (Pollard and Sag, 1994)..

In one simple model of lexical heads, each context-free rule is associated with
a head (Charniak 1997, Collins 1999). The head is the word in the phrase that is
grammatically the most important. Heads are passed up the parse tree; thus, each
non-terminal in a parse tree is annotated with a single word, which is its lexical head.
Figure 18.16 shows an example of such a tree from Collins (1999), in which each
non-terminal is annotated with its head.

For the generation of such a tree, each CFG rule must be augmented to identify
one right-side constituent to be the head child. The headword for a node is then set to
the headword of its head child. Choosing these head children is simple for textbook
examples (NN is the head of NP) but is complicated and indeed controversial for

18.10 • SUMMARY 21

most phrases. (Should the complementizer to or the verb be the head of an infinite
verb phrase?) Modern linguistic theories of syntax generally include a component
that defines heads (see, e.g., (Pollard and Sag, 1994)).

An alternative approach to finding a head is used in most practical computational
systems. Instead of specifying head rules in the grammar itself, heads are identified
dynamically in the context of trees for specific sentences. In other words, once
a sentence is parsed, the resulting tree is walked to decorate each node with the
appropriate head. Most current systems rely on a simple set of handwritten rules,
such as a practical one for Penn Treebank grammars given in Collins (1999) but
developed originally by Magerman (1995). For example, the rule for finding the
head of an NP is as follows (Collins, 1999, p. 238):

• If the last word is tagged POS, return last-word.
• Else search from right to left for the first child which is an NN, NNP, NNPS, NX, POS,

or JJR.
• Else search from left to right for the first child which is an NP.
• Else search from right to left for the first child which is a $, ADJP, or PRN.
• Else search from right to left for the first child which is a CD.
• Else search from right to left for the first child which is a JJ, JJS, RB or QP.
• Else return the last word

Selected other rules from this set are shown in Fig. 18.17. For example, for VP
rules of the form VP→ Y1 · · · Yn, the algorithm would start from the left of Y1 · · ·
Yn looking for the first Yi of type TO; if no TOs are found, it would search for the
first Yi of type VBD; if no VBDs are found, it would search for a VBN, and so on.
See Collins (1999) for more details.

Parent Direction Priority List
ADJP Left NNS QP NN $ ADVP JJ VBN VBG ADJP JJR NP JJS DT FW RBR RBS

SBAR RB
ADVP Right RB RBR RBS FW ADVP TO CD JJR JJ IN NP JJS NN
PRN Left
PRT Right RP
QP Left $ IN NNS NN JJ RB DT CD NCD QP JJR JJS
S Left TO IN VP S SBAR ADJP UCP NP
SBAR Left WHNP WHPP WHADVP WHADJP IN DT S SQ SINV SBAR FRAG
VP Left TO VBD VBN MD VBZ VB VBG VBP VP ADJP NN NNS NP
Figure 18.17 Some head rules from Collins (1999). The head rules are also called a head percolation table.

18.10 Summary

This chapter introduced constituency parsing. Here’s a summary of the main points:

• In many languages, groups of consecutive words act as a group or a con-
stituent, which can be modeled by context-free grammars (which are also
known as phrase-structure grammars).

• A context-free grammar consists of a set of rules or productions, expressed
over a set of non-terminal symbols and a set of terminal symbols. Formally,
a particular context-free language is the set of strings that can be derived
from a particular context-free grammar.

22 CHAPTER 18 • CONTEXT-FREE GRAMMARS AND CONSTITUENCY PARSING

• Structural ambiguity is a significant problem for parsers. Common sources
of structural ambiguity include PP-attachment and coordination ambiguity.

• Dynamic programming parsing algorithms, such as CKY, use a table of
partial parses to efficiently parse ambiguous sentences.

• CKY restricts the form of the grammar to Chomsky normal form (CNF).
• The basic CKY algorithm compactly represents all possible parses of the sen-

tence but doesn’t choose a single best parse.
• Choosing a single parse from all possible parses (disambiguation) can be

done by neural constituency parsers.
• Span-based neural constituency parses train a neural classifier to assign a score

to each constituent, and then use a modified version of CKY to combine these
constituent scores to find the best-scoring parse tree.

• Parsers are evaluated with three metrics: labeled recall, labeled precision,
and cross-brackets.

• Partial parsing and chunking are methods for identifying shallow syntac-
tic constituents in a text. They are solved by sequence models trained on
syntactically-annotated data.

Bibliographical and Historical Notes
According to Percival (1976), the idea of breaking up a sentence into a hierarchy of
constituents appeared in the Völkerpsychologie of the groundbreaking psychologist
Wilhelm Wundt (Wundt, 1900):

...den sprachlichen Ausdruck für die willkürliche Gliederung einer Ge-
sammtvorstellung in ihre in logische Beziehung zueinander gesetzten
Bestandteile

[the linguistic expression for the arbitrary division of a total idea
into its constituent parts placed in logical relations to one another]

Wundt’s idea of constituency was taken up into linguistics by Leonard Bloom-
field in his early book An Introduction to the Study of Language (Bloomfield, 1914).
By the time of his later book, Language (Bloomfield, 1933), what was then called
“immediate-constituent analysis” was a well-established method of syntactic study
in the United States. By contrast, traditional European grammar, dating from the
Classical period, defined relations between words rather than constituents, and Eu-
ropean syntacticians retained this emphasis on such dependency grammars, the sub-
ject of Chapter 19. (And indeed, both dependency and constituency grammars have
been in vogue in computational linguistics at different times).

American Structuralism saw a number of specific definitions of the immediate
constituent, couched in terms of their search for a “discovery procedure”: a method-
ological algorithm for describing the syntax of a language. In general, these attempt
to capture the intuition that “The primary criterion of the immediate constituent
is the degree in which combinations behave as simple units” (Bazell, 1952/1966, p.
284). The most well known of the specific definitions is Harris’ idea of distributional
similarity to individual units, with the substitutability test. Essentially, the method
proceeded by breaking up a construction into constituents by attempting to substitute
simple structures for possible constituents—if a substitution of a simple form, say,

BIBLIOGRAPHICAL AND HISTORICAL NOTES 23

man, was substitutable in a construction for a more complex set (like intense young
man), then the form intense young man was probably a constituent. Harris’s test was
the beginning of the intuition that a constituent is a kind of equivalence class.

The context-free grammar was a formalization of this idea of hierarchical
constituency defined in Chomsky (1956) and further expanded upon (and argued
against) in Chomsky (1957) and Chomsky (1956/1975). Shortly after Chomsky’s
initial work, the context-free grammar was reinvented by Backus (1959) and inde-
pendently by Naur et al. (1960) in their descriptions of the ALGOL programming
language; Backus (1996) noted that he was influenced by the productions of Emil
Post and that Naur’s work was independent of his (Backus’) own. After this early
work, a great number of computational models of natural language processing were
based on context-free grammars because of the early development of efficient pars-
ing algorithms.

Dynamic programming parsing has a history of independent discovery. Ac-
cording to the late Martin Kay (personal communication), a dynamic programming
parser containing the roots of the CKY algorithm was first implemented by John
Cocke in 1960. Later work extended and formalized the algorithm, as well as prov-
ing its time complexity (Kay 1967, Younger 1967, Kasami 1965). The related well-
formed substring table (WFST) seems to have been independently proposed byWFST

Kuno (1965) as a data structure that stores the results of all previous computations
in the course of the parse. Based on a generalization of Cocke’s work, a similar
data structure had been independently described in Kay (1967) (and Kay 1973). The
top-down application of dynamic programming to parsing was described in Earley’s
Ph.D. dissertation (Earley 1968, Earley 1970). Sheil (1976) showed the equivalence
of the WFST and the Earley algorithm. Norvig (1991) shows that the efficiency of-
fered by dynamic programming can be captured in any language with a memoization
function (such as in LISP) simply by wrapping the memoization operation around a
simple top-down parser.

The earliest disambiguation algorithms for parsing were based on probabilistic
context-free grammars, first worked out by Booth (1969) and Salomaa (1969); see

probabilistic
context-free

grammars
Appendix C for more history. Neural methods were first applied to parsing at around
the same time as statistical parsing methods were developed (Henderson, 1994). In
the earliest work neural networks were used to estimate some of the probabilities for
statistical constituency parsers (Henderson, 2003, 2004; Emami and Jelinek, 2005)
. The next decades saw a wide variety of neural parsing algorithms, including re-
cursive neural architectures (Socher et al., 2011, 2013), encoder-decoder models
(Vinyals et al., 2015; Choe and Charniak, 2016), and the idea of focusing on spans
(Cross and Huang, 2016). For more on the span-based self-attention approach we
describe in this chapter see Stern et al. (2017), Gaddy et al. (2018), Kitaev and Klein
(2018), and Kitaev et al. (2019). See Chapter 20 for the parallel history of neural
dependency parsing.

The classic reference for parsing algorithms is Aho and Ullman (1972); although
the focus of that book is on computer languages, most of the algorithms have been
applied to natural language.

24 CHAPTER 18 • CONTEXT-FREE GRAMMARS AND CONSTITUENCY PARSING

Exercises
18.1 Implement the algorithm to convert arbitrary context-free grammars to CNF.

Apply your program to the L1 grammar.

18.2 Implement the CKY algorithm and test it with your converted L1 grammar.

18.3 Rewrite the CKY algorithm given in Fig. 18.12 on page 14 so that it can accept
grammars that contain unit productions.

18.4 Discuss how to augment a parser to deal with input that may be incorrect, for
example, containing spelling errors or mistakes arising from automatic speech
recognition.

18.5 Implement the PARSEVAL metrics described in Section 18.8. Next, use a
parser and a treebank, compare your metrics against a standard implementa-
tion. Analyze the errors in your approach.

Exercises 25

Aho, A. V. and J. D. Ullman. 1972. The Theory of Parsing,
Translation, and Compiling, volume 1. Prentice Hall.

Backus, J. W. 1959. The syntax and semantics of the
proposed international algebraic language of the Zurich
ACM-GAMM Conference. Information Processing: Pro-
ceedings of the International Conference on Information
Processing, Paris. UNESCO.

Backus, J. W. 1996. Transcript of question and answer ses-
sion. In R. L. Wexelblat, ed., History of Programming
Languages, page 162. Academic Press.

Bazell, C. E. 1952/1966. The correspondence fallacy in
structural linguistics. In E. P. Hamp, F. W. Householder,
and R. Austerlitz, eds, Studies by Members of the En-
glish Department, Istanbul University (3), reprinted in
Readings in Linguistics II (1966), 271–298. University of
Chicago Press.

Black, E., S. P. Abney, D. Flickinger, C. Gdaniec, R. Gr-
ishman, P. Harrison, D. Hindle, R. Ingria, F. Jelinek,
J. L. Klavans, M. Y. Liberman, M. P. Marcus, S. Roukos,
B. Santorini, and T. Strzalkowski. 1991. A procedure for
quantitatively comparing the syntactic coverage of En-
glish grammars. Speech and Natural Language Work-
shop.

Bloomfield, L. 1914. An Introduction to the Study of Lan-
guage. Henry Holt and Company.

Bloomfield, L. 1933. Language. University of Chicago
Press.

Booth, T. L. 1969. Probabilistic representation of formal
languages. IEEE Conference Record of the 1969 Tenth
Annual Symposium on Switching and Automata Theory.

Charniak, E. 1997. Statistical parsing with a context-free
grammar and word statistics. AAAI.

Choe, D. K. and E. Charniak. 2016. Parsing as language
modeling. EMNLP.

Chomsky, N. 1956. Three models for the description of
language. IRE Transactions on Information Theory,
2(3):113–124.

Chomsky, N. 1956/1975. The Logical Structure of Linguistic
Theory. Plenum.

Chomsky, N. 1957. Syntactic Structures. Mouton.

Chomsky, N. 1963. Formal properties of grammars. In R. D.
Luce, R. Bush, and E. Galanter, eds, Handbook of Math-
ematical Psychology, volume 2, 323–418. Wiley.

Collins, M. 1999. Head-Driven Statistical Models for Natu-
ral Language Parsing. Ph.D. thesis, University of Penn-
sylvania, Philadelphia.

Cross, J. and L. Huang. 2016. Span-based constituency pars-
ing with a structure-label system and provably optimal
dynamic oracles. EMNLP.

Earley, J. 1968. An Efficient Context-Free Parsing Algorithm.
Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.

Earley, J. 1970. An efficient context-free parsing algorithm.
CACM, 6(8):451–455.

Emami, A. and F. Jelinek. 2005. A neural syntactic language
model. Machine learning, 60(1):195–227.

Gaddy, D., M. Stern, and D. Klein. 2018. What’s going on
in neural constituency parsers? an analysis. NAACL HLT.

Harris, Z. S. 1946. From morpheme to utterance. Language,
22(3):161–183.

Henderson, J. 1994. Description Based Parsing in a Connec-
tionist Network. Ph.D. thesis, University of Pennsylvania,
Philadelphia, PA.

Henderson, J. 2003. Inducing history representations for
broad coverage statistical parsing. HLT-NAACL-03.

Henderson, J. 2004. Discriminative training of a neural net-
work statistical parser. ACL.

Hopcroft, J. E. and J. D. Ullman. 1979. Introduction to Au-
tomata Theory, Languages, and Computation. Addison-
Wesley.

Kaplan, R. M. 1973. A general syntactic processor. In
R. Rustin, ed., Natural Language Processing, 193–241.
Algorithmics Press.

Kasami, T. 1965. An efficient recognition and syntax anal-
ysis algorithm for context-free languages. Technical
Report AFCRL-65-758, Air Force Cambridge Research
Laboratory, Bedford, MA.

Kay, M. 1967. Experiments with a powerful parser. COL-
ING.

Kay, M. 1973. The MIND system. In R. Rustin, ed., Natural
Language Processing, 155–188. Algorithmics Press.

Kay, M. 1982. Algorithm schemata and data structures in
syntactic processing. In S. Allén, ed., Text Processing:
Text Analysis and Generation, Text Typology and Attribu-
tion, 327–358. Almqvist and Wiksell, Stockholm.

Kitaev, N., S. Cao, and D. Klein. 2019. Multilingual
constituency parsing with self-attention and pre-training.
ACL.

Kitaev, N. and D. Klein. 2018. Constituency parsing with a
self-attentive encoder. ACL.

Kuno, S. 1965. The predictive analyzer and a path elimina-
tion technique. CACM, 8(7):453–462.

Magerman, D. M. 1995. Statistical decision-tree models for
parsing. ACL.

Naur, P., J. W. Backus, F. L. Bauer, J. Green, C. Katz,
J. McCarthy, A. J. Perlis, H. Rutishauser, K. Samelson,
B. Vauquois, J. H. Wegstein, A. van Wijnagaarden, and
M. Woodger. 1960. Report on the algorithmic language
ALGOL 60. CACM, 3(5):299–314. Revised in CACM
6:1, 1-17, 1963.

Norvig, P. 1991. Techniques for automatic memoization with
applications to context-free parsing. Computational Lin-
guistics, 17(1):91–98.

Percival, W. K. 1976. On the historical source of immedi-
ate constituent analysis. In J. D. McCawley, ed., Syntax
and Semantics Volume 7, Notes from the Linguistic Un-
derground, 229–242. Academic Press.

Pollard, C. and I. A. Sag. 1994. Head-Driven Phrase Struc-
ture Grammar. University of Chicago Press.

Salomaa, A. 1969. Probabilistic and weighted grammars.
Information and Control, 15:529–544.

Sekine, S. and M. Collins. 1997. The evalb software. http:
//cs.nyu.edu/cs/projects/proteus/evalb.

Sheil, B. A. 1976. Observations on context free parsing.
SMIL: Statistical Methods in Linguistics, 1:71–109.

Socher, R., J. Bauer, C. D. Manning, and A. Y. Ng. 2013.
Parsing with compositional vector grammars. ACL.

https://www.aclweb.org/anthology/H91-1060
https://www.aclweb.org/anthology/H91-1060
https://www.aclweb.org/anthology/H91-1060
https://doi.org/10.18653/v1/D16-1257
https://doi.org/10.18653/v1/D16-1257
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/N18-1091
https://doi.org/10.18653/v1/N18-1091
https://aclanthology.org/N03-1014
https://aclanthology.org/N03-1014
https://doi.org/10.3115/1218955.1218968
https://doi.org/10.3115/1218955.1218968
https://aclanthology.org/C67-1009
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.3115/981658.981695
https://doi.org/10.3115/981658.981695
https://www.aclweb.org/anthology/J91-1004
https://www.aclweb.org/anthology/J91-1004
http://cs.nyu.edu/cs/projects/proteus/evalb
http://cs.nyu.edu/cs/projects/proteus/evalb
https://aclanthology.org/P13-1045

26 Chapter 18 • Context-Free Grammars and Constituency Parsing

Socher, R., C. C.-Y. Lin, A. Y. Ng, and C. D. Manning. 2011.
Parsing natural scenes and natural language with recur-
sive neural networks. ICML.

Stern, M., J. Andreas, and D. Klein. 2017. A minimal span-
based neural constituency parser. ACL.

Vinyals, O., Ł. Kaiser, T. Koo, S. Petrov, I. Sutskever,
and G. Hinton. 2015. Grammar as a foreign language.
NeurIPS.

Wang, W. and B. Chang. 2016. Graph-based dependency
parsing with bidirectional LSTM. ACL.

Wundt, W. 1900. Völkerpsychologie: eine Untersuchung der
Entwicklungsgesetze von Sprache, Mythus, und Sitte. W.
Engelmann, Leipzig. Band II: Die Sprache, Zweiter Teil.

Younger, D. H. 1967. Recognition and parsing of context-
free languages in time n3. Information and Control,
10:189–208.

https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/P16-1218
https://doi.org/10.18653/v1/P16-1218

	Context-Free Grammars and Constituency Parsing
	Constituency
	Context-Free Grammars
	Formal Definition of Context-Free Grammar

	Treebanks
	Grammar Equivalence and Normal Form
	Ambiguity
	CKY Parsing: A Dynamic Programming Approach
	Conversion to Chomsky Normal Form
	CKY Recognition
	CKY Parsing
	CKY in Practice

	Span-Based Neural Constituency Parsing
	Computing Scores for a Span
	Integrating Span Scores into a Parse

	Evaluating Parsers
	Heads and Head-Finding
	Summary
	Bibliographical and Historical Notes
	Exercises

