
Multivariate Distributionally Robust Convex Regression
under Absolute Error Loss

Zhengqing Zhou

Department of Mathematics, Stanford University

Joint work with:

Jose H. Blanchet Stanford MS&E
Peter W. Glynn Stanford MS&E

Jun Yan Stanford STATS

Zhengqing (Stanford Math) NeurIPS 2019, Vancouver 1 / 15



Problem Setting

Consider a regression model of the form

Yi = f∗(Xi) + Ei, i = 1, 2, · · · , n,

where the covariates Xi ∈ Rd, the response Yi ∈ R and Ei are random noise with
zero mean and finite variance.
Q: How to nonparametrically estimating f∗ under the convex shape constraint?
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Convex Shape Matters!

Convexity is crucial in some settings, in the sense that a non-convex estimated
function can create economically undesirable anomalies.

I For instance, consider the pricing of a European Call C(K) = E(S −K)+.

I Suppose we fit the price Ĉ(K) that is NOT convex in K, i.e., there exists
K and ε > 0 such that

Ĉ(K + ε) + Ĉ(K − ε) < 2Ĉ(K).

I This allows us to buy a contract at strike price K + ε and one at K − ε,
then sell two of the options at K.

I The total payoff at expiry is

P = (S − (K − ε))+ + (S − (K + ε))+ − 2(S −K)+.

I P ≥ 0 always holds for all S (In particular, P > 0 for K − ε < S < K + ε),
which leads to an arbitrage!
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Convex Regression

Convex regression problems arise in a variety of fields.

I In financial engineering, stock option prices usually have convexity
restrictions.

I In economics, production functions and utility functions are often requried to
be concave.

I Approximating an objective function for a convex optimization problem.

I Convex (concave) regression problems are also common in operations
research and reinforcement learning.
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Convex Regression

I Model
Yi = f∗(Xi) + Ei, i = 1, 2, · · · , n.

I Estimator

f̂n := arg min
f∈F

1

n

n∑
i=1

(Yi − f(Xi))
2
,

where F is a suitable convex function class.

I Measure of performance

lp(f∗, f̂n) :=

[
1

n

n∑
i=1

(
f∗(Xi)− f̂(Xi)

)p]1/p
.

where p ≥ 1. In standard literature, l2 error loss was used to measure the
“distance” between f̂ and f∗.
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Recent Progress

I (Lim and Glynn’12, Seijo and Sen’11) Consistency of f̂n for general d.

I (Guntuboyina and Sen’14) Suppose d = 1, the least square estimator f̂LS

achieve the optimal rate

l2(f∗, f̂
LS
n ) = OP (n−2/5).

I (Lim’14) Suppose d > 4, f∗ : [0, 1]d → R and ‖∇f∗‖∞ is bounded by C,

then there is an estimator f̂n (depending on C) such that

l2(f∗, f̂
LS
n ) = OP (n−1/d).
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Our Model

Q: What if we want an estimator that is robust to both adversarial perturbations
in the empirical data and outliers?

I Leverage the idea of Optimal Transport (Wasserstein distance).

I Let µ and ν be two distributions,

Dc(µ, ν) := min {Eπc(X,Y ) : π ∈ Π(µ, ν)} ,

where c(·, ·) is a cost function.
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Our Model

Q: What if we want an estimator that is robust to both adversarial perturbations
in the empirical data and outliers?

Distributionally Robust Convex Regression (DRCR)

(X1, Y1), · · · , (Xn, Yn) i.i.d.,

f̂DR
n := arg min

f∈F
sup

P∈P(Rd+1):D(P,Pn)≤δ
EP |Y − f(X)|,

where F is a suitable class of convex Lipschitz functions.

Remarks :

I Distributional robustness: By introducing the Wasserstien ball

{P : D(P, Pn) ≤ δ} ,
our estimator has performance guarantees under noisy inputs and small
distributional shifts.

I Robust to outliers: Implement the L1 loss function.
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Tractable Formulation

Theorem (Blanchet, Glynn, Yan and Z.’19)

For any δ > 0, we have

inf
f∈F

sup
P∈P(Rd+1):D(P,Pn)≤δ

EP |Y−f(X)| = inf
f∈F

{
δ‖∇f‖∞ +

1

n

n∑
i=1

|Yi − f(Xi)|

}
.

I The inner maximization is solved in closed form resulting in a regularization
penalty involves the norm of the gradient.

I This is still an infinite dimensional problem...
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Algorithm

I To solve the DRCR, consider the
following finite dimensional LP:

min
gi,ξi

1

n

n∑
i=1

|Yi − gi|+ δ max
1≤i≤n

‖ξi‖∞.

s.t. gj ≥ gi + 〈ξi, Xj −Xi〉,
1 ≤ i, j ≤ n.

I Let (ĝ1, ξ̂1), · · · , (ĝn, ξ̂n) be any
solution of the above LP. Then

f̂DR
n,δ (x) := max

1≤i≤n

(
ĝi + 〈ξ̂i, x−Xi〉

)
.

I Example of our estimator (d = 1).

x

y

•

• • •
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Statistical Guarantee

We focus on d > 4, and assume the function f∗ is convex with ‖∇f∗‖∞ <∞.

Theorem (Blanchet, Glynn, Yan and Z.’19)

Under mild assumptions on the distribution of X and the noise E , we can pick a
δn of order Θ̃(n−2/d) such that

l1(f̂DR
n,δn , f∗) = ÕP

(
n−1/d

)
.

Comparison to standard literature

Existing Results Our Result
Algorithm QP, O(n2) constraints LP, O(n2) constraints

X Bounded support Light tail
Robustness 7 3

No apriori knowledge of f∗ 7 3

Rate of Convergence O
(
n−1/d

)
Õ
(
n−1/d

)
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Numerical Experiments

I Let d = 5, and f∗(x) = |x1|+ |x2|+ |x3|+ |x4|+ |x5|.
I Generate Xi i.i.d. from N (0, I5), then generate Yi by

Yi = f∗(Xi) + Ei,

where Ei are sampled i.i.d. from N(0, 0.04).

I To construct (DRCR) f̂DR
n,δn

, we simply take δn = n−2/5.

I To compare, we consider the estimator (LSEc) f̂
LS
c in (Lim’14), which

require an estimation ‖∇f∗‖∞ ≤ c. We set c = 10 and 0.8, since in practise
we may overestimate/underestimate the ‖∇f∗‖∞.

I We also consider the kernel estimator (typically not in convex shape),
hyperparameters are chosen via cross-validation.

I We evaluate the performance in both l1 and l2 losses.
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Numerical Experiments

(a) Light tail, l1 loss (b) Light tail, l2 loss

I f̂DR
n,δn

outperforms f̂LSn,0.8, f̂LSn,10 and the kernel estimator in both l1 and l2
losses

I The performance of f̂LSn,c is sensitive to the choice of the constant c, the a
priori bound on ‖∇f∗‖∞.
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Conclusion

Summary

I We formulate and study the distributionally robust convex regression.

I Our estimator is designed to be robust to adversarial perturbations in the
empirical data.

I Contrary to all of the existing results, our convergence rates hold without
assuming compact domain, and with no apriori bounds on the underlying
convex function or its gradient norm.

Future works

I Find the optimal rate of convergence and design an estimator to achieve it.

I Introduce distributional robustness to estimate other shape restricted
functions, such as quasi-convex function, incresingly convex function, etc.
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End

Thank you!
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